Cho hình vuông ABCD cạnh a, tâm O. Tìm tập hợp điểm M sao cho:
\(\overrightarrow{MA}.\overrightarrow{MB}+\overrightarrow{MC}.\overrightarrow{MD}=5a^2\)
Cho tứ giác ABCD, I và J lần lượt là trung điểm của AB và CD. Tìm tập hợp điểm M sao cho
\(\overrightarrow{MA}.\overrightarrow{MB}+\overrightarrow{MC}.\overrightarrow{MD}=\dfrac{1}{2}.\overrightarrow{IJ}\)
Cho hình vuông ABCD có cạnh 4a. Tìm tập hợp M thỏa mãn: \(\overrightarrow{MB}.\overrightarrow{MC}=5a^2\)
Cho tam giác ABC vuông tại A. Tìm tập hợp các điểm M thỏa:
a. \(\overrightarrow{MA}.\overrightarrow{MB}=\overrightarrow{MA}.\overrightarrow{MC}\)
b. \(\overrightarrow{MB}.\overrightarrow{MC}=\overrightarrow{AB}.\overrightarrow{AC}\)
c. \(\overrightarrow{MB}.\overrightarrow{MC}=MA^2\)
Cho a là số thực dương. Tam giác ABC vuông tại A có trọng tâm G và AB = 3a. AC = 4a.
a) Tính theo a biểu thức \(GA^2+GB^2+GC^2\)
b) Tìm tập hợp điểm M thỏa \(\overrightarrow{MA}.\overrightarrow{MB}+\overrightarrow{MB}.\overrightarrow{MC}+\overrightarrow{MC}.\overrightarrow{MA}=\frac{2}{3}a^2\)
Cho tam giác đều ABC cạnh a . Tập hợp các điểm M thỏa mã đẳng thức
\(4\overrightarrow{MA}^2+\overrightarrow{MB^2}+\overrightarrow{MC}^2=\dfrac{5a^2}{2}\)
nằm trên một đường tròn bán kính R . Tính R ?
Cho\(\Delta ABC\) và các điểm M, N, P thoả mãn \(\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{O}\), \(\overrightarrow{NB}+3\overrightarrow{NC}=\overrightarrow{0}\), \(2\overrightarrow{PA}+k\overrightarrow{PC}=\overrightarrow{0}\). Tìm k để 3 điểm M, N, P thẳng hàng
Cho △ABC. CMR với mọi điểm M ta có \(\overrightarrow{MA}.\overrightarrow{BC}+\overrightarrow{MB}.\overrightarrow{CA}+\overrightarrow{MC}.\overrightarrow{AB}=0\)
Cho các điểm A,B cố định thỏa mãn AB = a. Tìm tập hợp M thỏa mãn \(\overrightarrow{AM}.\overrightarrow{AB}=2a^2\)