a/ \(2a=10\Rightarrow a=5\Rightarrow a^2=25\)
\(2c=6\Rightarrow c=3\Rightarrow b^2=a^2-c^2=25-9=16\)
Phương trình elip: \(\frac{x^2}{25}+\frac{y^2}{16}=1\)
b/ \(c=\sqrt{3}\Rightarrow c^2=3\)
Gọi pt elip có dạng \(\frac{x^2}{a^2}+\frac{y^2}{a^2-3}=1\)
Do điểm \(\left(1;\frac{\sqrt{3}}{2}\right)\) thuộc elip nên \(\frac{1}{a^2}+\frac{3}{4\left(a^2-3\right)}=1\)
\(\Leftrightarrow4\left(a^2-3\right)+3a^2=4a^2\left(a^2-3\right)\)
\(\Leftrightarrow4a^4-19a^2+12=0\Rightarrow\left[{}\begin{matrix}a^2=4\\a^2=\frac{3}{4}< c^2\left(l\right)\end{matrix}\right.\)
Vậy pt elip là: \(\frac{x^2}{4}+\frac{y^2}{1}=1\)