a) l14 -3xl – 2x = 2x + 7 ⇔ l14 – 3xl = 4x + 7 (1)
ĐK: 4x + 7 ≥ 0 ⇒ x ≥ -\(\frac{7}{4}\)
(1) ⇔ 14 – 3x = 4x + 7 hoặc 14 – 3x = -4x – 7
⇔ x = 1 (thỏa mãn) hoặc x = -21 (loại)
Chứng minh được:
Suy ra được min P = 11, đạt khi x = y = \(\frac{1}{2}\)
a) l14 -3xl – 2x = 2x + 7 ⇔ l14 – 3xl = 4x + 7 (1)
ĐK: 4x + 7 ≥ 0 ⇒ x ≥ -\(\frac{7}{4}\)
(1) ⇔ 14 – 3x = 4x + 7 hoặc 14 – 3x = -4x – 7
⇔ x = 1 (thỏa mãn) hoặc x = -21 (loại)
Chứng minh được:
Suy ra được min P = 11, đạt khi x = y = \(\frac{1}{2}\)
Bài 1 Cho hệ phương trình mx−y=1 va x+4.(m+1)y=1. Tìm m nguyên để hệ phương trình có no duy nhất là no nguyên
Bài 2
Bài 2
Cho hệ phương trình x+my=1 và mx−y=−m
a) Chứng minh rằng hệ phương trình đã cho luôn có nghiệm duy nhất với mọi m ( đã xong )
b)Tìm m để hệ phương trình có nghiệm duy nhất (x, y) thỏa mãn x<1 và y<1 (đã xong )
c)tìm hệ thức liên hệ giữa x và y không phụ thuộc vào giá trị của m
Bài 3
Cho hệ phương trình x−my=2−4m và mx+y=3m+1) Giải hệ phương trình khi m = 2 ( xong )
b) Chứng minh hệ luôn có nghiệm với mọi giá trị của m . Giả sử (xo ,yo) là một nghiệm của hệ .Chứng minh đẳng thức x2o+y2o−5(x2o+y2o)+10=0xo2+yo2−5(xo2+yo2)+10=0
Mọi người giúp mk làm câu c bài 2 , 3 với
1) Cho 2 số dương x;y thay đổi thỏa mãn xy=2.
Tìm GTNN của M=\(\frac{1}{x}+\frac{2}{y}+\frac{3}{2x+y}\)
2) Cho a,b là các số dương thay đổi thỏa mãn a+b=2.
Tìm GTNN của Q=\(2\left(a^2+b^2\right)-6\left(\frac{a}{b}+\frac{b}{a}\right)+9\left(\frac{1}{a^2}+\frac{1}{b^2}\right)\)
mọi người giúp mình 2 bài này với, xin cảm ơn
a, cho 2 số dương x,y thỏa mãn x+y=1
tìm min của \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)
b, cho x,y,z là các số dương thỏa mãn : \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}=6\)
cmr : \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\le\frac{3}{2}\)
Bài 1: cho 2 số dương x và y thoả mãn x+y= \(\frac{5}{2}.\sqrt{xy}\) . Tính tỷ số của x và y
Bài 2: Nếu hai số x,y thoả mãn \(x\sqrt{1-y^2}+y\sqrt{1-x^2}=1\)thì \(x^2+y^2=1\)
Bài3: Giải phương trình \(\sqrt{2x^2-9x+4}+3\sqrt{2x-1}=\sqrt{2x^2+2\left(x-11\right)}\)
Giúp em với ạ, cảm ơn ạ
Cho x, y là 2 số tự nhiên khác 0 thỏa mãn 2x + 3y = 53. Tìm giá trị lớn nhất của biếu thức
\(P=\sqrt{xy+4}\)
1, Cho x,y dương thỏa mãn x2+y2=2. Tìm giá trị nhỏ nhất P=\(\frac{X^2}{\sqrt{Y}}\)+\(\frac{Y^2}{\sqrt{X}}\)
Cho x,y,z là các số thực dương thoả mãn \(x\ge y\ge z\) và \(x+y+z=3\) . Tìm giá trị nhỏ nhất của biểu thức \(B=\frac{x}{z}+\frac{z}{y}+3y\)
cho a, b, c là các số dương thỏa mãn a+b+c=1. tìm giá trị nhỏ nhất của biểu thức B=\(\sqrt{a^2+ab+b^2}+\sqrt{b^2+bc+c^2}+\sqrt{c^2+ca+a^2}\)
tìm cặp số ( x ; y ) thỏa mãn pt : x2 + y2 + 6x - 3y - 2xy + 7 =0 sao cho y đạt giá trị lớn nhất.