\(=\dfrac{\sqrt{x}+1-2\sqrt{x}+2+x-5}{x-1}=\dfrac{x-\sqrt{x}-2}{x-1}=\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)
\(=\dfrac{\sqrt{x}+1-2\sqrt{x}+2+x-5}{x-1}=\dfrac{x-\sqrt{x}-2}{x-1}=\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)
\(B=\dfrac{3}{\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}+\dfrac{x+5}{x-1}\)
Chứng minh rằng \(B=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
B=\(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{6}{\sqrt{x}-1}-\dfrac{\sqrt{x}+15}{x+2\sqrt{ }x}-3\) Chứng minh B=\(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\) giúp mik câu này vs ạ mik đang cần gấp
Cho A=\(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
B=\(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{3\sqrt{x}+1}{x-1}\)
Chứng minh A+B= \(\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\)
Help
Cho biểu thức:
A = \(\left(\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right)+\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)với x > 0; x ≠ 1
a) Chứng minh: A = \(\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
b) Tìm x để 2A = \(2\sqrt{x}+5\)
B=\(\dfrac{2\sqrt{x}-3}{\sqrt{x}-1}\)+\(\dfrac{3-\sqrt{x}}{x-1}\)
chứng minh B=\(\dfrac{2\sqrt{x}}{\sqrt{x}+1}\)
Cho biểu thức A = \(\dfrac{\sqrt{x}+2}{\sqrt{x}-3};B=\dfrac{\sqrt{x}+5}{\sqrt{x}+1}+\dfrac{\sqrt{x}-7}{1-x}\) với x ≥ 0;x ≠ 1;x ≠ 9
a, Tính giá trị biểu thức A khi x = 16
b,Chứng minh rằng: B = \(\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\)
c, Tìm các giá trị x để \(\dfrac{4A}{A}\le\dfrac{x}{\sqrt{x}-3}\)
Cho \(A=\dfrac{7\sqrt{x}-2}{\sqrt{x}-2}\) và \(B=\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{2}{1-\sqrt{x}}-\dfrac{4\sqrt{x}}{x-1}\) với x ≥ 0, x ≠ 1, x ≠ 4.
a) Tính A khi x = 25.
b) Xét biểu thức P = B - A. Chứng minh: \(P=\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\).
c) Tìm x để P = A.B nhận giá trị nguyên lớn nhất.
Bài 1 :Cho hai biểu thức\(A=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\) và\(B=\dfrac{3}{\sqrt{x}-1}-\dfrac{\sqrt{x}+5}{x-1}\) với x≥ 0; x≠1
a. Tính giá trị của biểu thức A khi x = 4
b. Chứng minh\(\dfrac{2}{\sqrt{x}+1}\)
Bài 2:
Cho biểu thức:\(P=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
Rút gọn P
Chứng minh đẳng thức
a. \(\left[\dfrac{2}{3x}-\dfrac{2}{x+1}1.\left(\dfrac{x+1}{3x}-x-1\right)\right]:\dfrac{x-1}{x}=\dfrac{2x}{x-1}\)
b. \(\left(\dfrac{1}{a-\sqrt{a}}+\dfrac{1}{\sqrt{a}-1}\right):\dfrac{\sqrt{a}+1}{a-2\sqrt{a}+1}=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)
Cho B=\(\dfrac{x+3}{x-9}+\dfrac{2}{3+\sqrt{x}}-\dfrac{1}{3-\sqrt{x}}\)
Chứng minh B= \(\dfrac{\sqrt{x}}{\sqrt{x}-3}\)
Help