`[1-3x]/[1-2x]+[3x-2]/[2x-1]` `ĐK: x \ne 1/2`
`=[1-3x+2-3x]/[1-2x]`
`=[3-6x]/[1-2x]`
`=[3(1-2x)]/[1-2x]=3`
\(\dfrac{1-3x}{1-2x}+\dfrac{3x-2}{2x-1}\\ =\dfrac{1-3x}{1-2x}-\dfrac{3x-2}{1-2x}\\ =\dfrac{1-3x-3x+2}{1-2x}\\ =\dfrac{3-6x}{1-2x}\\ =\dfrac{3\left(1-2x\right)}{1-2x}\\ =3\)
\(=\dfrac{3x-1+3x-2}{2x-1}=\dfrac{6x-3}{2x-1}=3\)
`(1-3x)/(1-2x) + (3x-2)/(2x-1)`
`= (1-3x)/(1-2x) - (3x-2)/(1-2x)`
`= (1-3x -(3x-2))/(1-2x)`
`= (1-3x -3x+2)/(1-2x)`
`= (3-6x)/(1-2x)`
`=(3(1-2x))/((1-2x)`
`=3`
1-3x/1-2x+3x-2/2x-1
=1-3x/1-2x-3x+2/1-2x
=1-3x-3x+2/1-2x
=3-6x/1-2x
=3(1-2x)/1-2x
=3