Với x >= 0 ; x khác 1
\(P=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}\right):\left(\dfrac{\sqrt{x}}{x+1}+\dfrac{1}{x+1}\right)\)
\(=\left(\dfrac{\sqrt{x}-1}{x+1}\right):\dfrac{\sqrt{x}+1}{x+1}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
b, Ta có \(P-\dfrac{1}{2}< 0\Leftrightarrow\dfrac{2\sqrt{x}-2-\sqrt{x}-1}{2}< 0\Rightarrow x< 9\)
Kết hợp đk vậy 0 =< x < 9 ; x khác 1
c, \(\dfrac{\sqrt{x}+1-2}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\ge-2+1=-1\)
Dấu ''='' xảy ra khi x = 0
d, \(P=1-\dfrac{2}{\sqrt{x}+1}\Rightarrow\sqrt{x}+1\inƯ\left(-2\right)=\left\{\pm1;\pm2\right\}\)
\(\sqrt{x}+1\) | 1 | -1 | 2 | -2 |
x | 0 | loại | 1 | loại |