`\triangle ABC` : `\hat{A} =90^o`
`-> BC^2 = AB^2 +AC^2`
`-> 20^2 = AB^2+AC^2`
`-> AB^2+AC^2 =400`
Ta có :
`(AB)/(AC) =3/4 -> (AB)/3 =(AC)/4 -> (AB^2)/9 = (AC^2)/16 = (AB^2+AC^2)/(9+16) =400/25 =16`
`->(AB)/3 =(AC)/4 =4`
$\Rightarrow \begin{cases} AB = 3 .4 =12 cm \\ AC = 4 . 4 =16cm \end{cases}$