a, \(\Delta=\left(2m-1\right)^2-4\left(-2m-3\right)=4m^2-4m+1+8m+12\)
\(=4m^2+4m+13=\left(4m^2+4m+1\right)+12=\left(2m+1\right)^2+12>0\)
Vậy pt luôn có 2 nghiệm pb
b, Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=1-2m\\x_1x_2=-2m-3\end{matrix}\right.\)
Ta có \(A=\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2=-13\)
Thay vào ta được
\(\left(2m-1\right)^2-4\left(-2m-3\right)=-13\)
\(\Leftrightarrow4m^2-4m+1+8m+12=-13\Leftrightarrow4m^2+4m+26=0\)
\(\Leftrightarrow\left(2m+1\right)^2+25=0\left(voli\right)\)
Vậy ko có gtri m thoả mãn A =-13