Bài 22:
a) Ta có: \(A=\left(\sqrt{45}+\sqrt{63}\right)\left(\sqrt{7}-\sqrt{5}\right)\)
\(=\left(3\sqrt{5}+3\sqrt{7}\right)\left(\sqrt{7}-\sqrt{5}\right)\)
\(=3\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)\)
\(=3\left(7-5\right)\)
\(=3.2\)
\(=6\)
Với \(x\ge0;x\ne1\) ta có:
\(B=\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}+1}+1\)
\(=\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\left(\sqrt{x}+1\right)-\left(\sqrt{x}-1\right)+\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{2+\left(x-1\right)}{x-1}\)
\(=\dfrac{1+x}{x-1}\)
Vậy .......
b) Để A = B thì: \(6=\dfrac{1+x}{x-1}\)
\(\Rightarrow6x-6=1+x\)
\(\Leftrightarrow5x=7\)
\(\Leftrightarrow x=\dfrac{7}{5}\) (thỏa mãn)
Vậy.....
Bài 21:
a) Điều kiện xác định của B:
\(\left\{{}\begin{matrix}x>0\\\sqrt{x}-3\ne0\\\sqrt{x}+3\ne0\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}x>0\\\sqrt{x}\ne3\\\sqrt{x}\ne-3
\left(luôn
đúng
\forall x>0\right)\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}x>0\\x\ne9\end{matrix}\right.\)
Với x>0; x\(\ne\)9 ta có: \(B=\dfrac{1}{\sqrt{x}-3}+\dfrac{1}{\sqrt{x}+3}\)
\(=\dfrac{\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\left(\sqrt{x}+3\right)+\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{2\sqrt{x}}{x-9}\)
Vậy \(B=\dfrac{2\sqrt{x}}{x-9}\) với x>0; x\(\ne\)9
b) Ta có: \(A=\left(\sqrt{8}-\sqrt{12}\right)\left(\sqrt{2}+\sqrt{3}\right)\)
\(=\left(2\sqrt{2}-2\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)\)
\(=2\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)\)
\(=2\left(2-3\right)\)
\(=2.\left(-1\right)\)
\(=-2\)
Vậy A = - 2
c) Để A = B thì: \(-2=\dfrac{2\sqrt{x}}{x-9}\)
\(\Rightarrow-2x+18=2\sqrt{x}\)
\(\Leftrightarrow\left(-2x+18\right)^2=4x\)
\(\Leftrightarrow4x^2-72x+324=4x\)
\(\Leftrightarrow4x^2-76x+324=0\)
\(\Leftrightarrow x^2-19x+81=0\)
Ta có: \(\Delta=\left(-19\right)^2-4.1.81=37>0\)
=> Phương trình có 2 nghiệm phân biệt:
\(x_1=\dfrac{-\left(-19\right)+\sqrt{37}}{2.1}=\dfrac{19+\sqrt{37}}{2}\)(thỏa mãn)
\(x_2=\dfrac{-\left(-19\right)-\sqrt{37}}{2.1}=\dfrac{19-\sqrt{37}}{2}\)(thỏa mãn)
Vậy.....