a, Ta có : A=\(\dfrac{\sqrt{6+2\sqrt{5}}}{\sqrt{2}}\) - \(\dfrac{\sqrt{6-2\sqrt{5}}}{\sqrt{2}}\) - \(\sqrt{2}\)
<=> A= \(\sqrt{5}+1\) - (\(\sqrt{5}-1\) ) - \(\sqrt{2}\)
<=> A = 2 - \(\sqrt{2}\)
<=> A= \(\sqrt{2}\)
b, B= \(\dfrac{\sqrt{8-2\sqrt{7}}}{\sqrt{2}}\) - \(\dfrac{\sqrt{8+2\sqrt{5}}}{\sqrt{2}}\) + \(\sqrt{7}\)
= \(\sqrt{7}-1\)\(-\left(\sqrt{7}+1\right)\) +\(\sqrt{7}\)
= \(\sqrt{7}-2\)