so sánh:
\(\sqrt{2}+\sqrt{3}\) và \(\sqrt{10}\)
so sánh:
\(\sqrt{2}+\sqrt{3}\) và \(\sqrt{10}\)
Ta có : \(A^2=\left(\sqrt{2}+\sqrt{3}\right)^2=2+3+2\sqrt{6}=5+2\sqrt{6}=5+\sqrt{2^2.6}=5+\sqrt{24}.\)
Lại có : \(B^2=\left(\sqrt{10}\right)^2=10\)
\(\sqrt{24}< \sqrt{25}=>\sqrt{24}< 5=>5+\sqrt{24}< 5+5=>5+\sqrt{24}< 10\)
Mà \(A^2< B^2=>A< B=>\sqrt{2}+\sqrt{3}< \sqrt{10}\)
a.\(\sqrt{13^2-12^2}\)
b.\(\sqrt{17^2-8^2}\)
c.\(\sqrt{117^2-108^2}\)
d.\(\sqrt{313^2-312^2}\)
a, \(\sqrt{13^2-12^2}=\sqrt{\left(13-12\right)\left(13+12\right)}\)
\(=\sqrt{1.25}=\sqrt{25}=5\)
b, \(\sqrt{17^2-8^2}=\sqrt{\left(17-8\right)\left(17+8\right)}\)
\(=\sqrt{9.25}=\sqrt{9}.\sqrt{25}=3.5=15\)
c, \(\sqrt{117^2-108^2}=\sqrt{\left(117-108\right)\left(117+108\right)}\)
\(=\sqrt{9.225}=\sqrt{9}.\sqrt{225}=3.15=45\)
d, \(\sqrt{313^2-312^2}=\sqrt{\left(313-312\right)\left(313+312\right)}\)
\(=\sqrt{1.625}=\sqrt{625}=25\)
Chúc bạn học tốt!!!
a, \(\sqrt{13^2-12^2}=\sqrt{\left(13-12\right)\left(13+12\right)}=\sqrt{25}=5\)
b, \(\sqrt{17^2-8^2}=\sqrt{\left(17-8\right)\left(17+8\right)}=\sqrt{9.25}=15\)
c, \(\sqrt{117^2-108^2}=\sqrt{\left(117-108\right)\left(117+108\right)}\)
\(=\sqrt{9.225}=45\)
d, \(\sqrt{313^2-312^2}=\sqrt{\left(313-312\right)\left(313+312\right)}=\sqrt{625}=25\)
Cho đường tròn tâm O bán kính R, từ A ở ngoài đường tròn ta kẻ 2 tiếp tuyến AP và AQ(P,Q là 2 tiếp điểm).Kẻ dây QB //AP, AB cắt đường tròn tại C.
a) CM : APOQ nội tiếp ,tam giác PQB cân ,AP2=AB*AC
b) QC cắt AP tại I.CM : IA=IP
A)\(\left(3-2\sqrt{2}\right).\left(3+2\sqrt{2}\right)\) B) \(\sqrt{\left(\sqrt{3}-2\right)}^2-\sqrt{\left(\sqrt{3}+2\right)}^2\) C)\(\sqrt{3-2\sqrt[]{2}}-\sqrt{3+2\sqrt{2}}\)
D)\(\left(1+\sqrt{3}-\sqrt{2}\right).\left(1+\sqrt{3}+2\right)\)
E) \(\left(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\right)^2\) F)\(\sqrt{15-\sqrt{216}}+\sqrt{33-12\sqrt{6}}\)
H)\(\sqrt{8\sqrt{3}}-2\sqrt{25\sqrt{12}}+4\sqrt{\sqrt{192}}\)
b và c.... ok!
b) \(\sqrt{\left(\sqrt{3}-2\right)^2}-\sqrt{\left(\sqrt{3}+2\right)^2}=\left(\sqrt{3}-2\right)-\left(\sqrt{3}+2\right)=-4\)
nãy nhìn không kĩ nên mới nói là bình phương lên,sorry nhak
c) Đặt \(C=\sqrt{3-2\sqrt{2}}-\sqrt{3+2\sqrt{2}}\)
ta có: \(C^2=3-2\sqrt{2}+3+2\sqrt{2}-2=4\)
=> \(C=-\sqrt{2}\) (vì \(\sqrt{3-2\sqrt{2}}< \sqrt{3+2\sqrt{2}}\))
a) hằng đẳng thức số 3 (hiệu 2 bình phương)
b) bình phương cả cái biểu thức đó lên, tính bình thường
c) bình phương cả lên như câu b
d) giống câu a
e) hẳng đẳng thức số 1
f) phá căn ra (biến đổi biểu thức trong căn thành hằng đẳng thức số 1 hoặc 2)
h) nghi là hằng đẳng thức số 1 hoặc số 2, từ từ lát nữa tớ xem
khó hiểu chỗ nào thì hỏi nhé
câu h tớ chỉ biết thế này thôi, mà ko biết là làm vậy có được ko nữa ^^!
\(H=\sqrt{8\sqrt{3}}-2\sqrt{25\sqrt{12}}+4\sqrt{8\sqrt{3}}\)\(=5\sqrt{8\sqrt{3}}-2\sqrt{50\sqrt{3}}\)
Tính giá trị biểu thức \(M=\dfrac{1}{x+2}+\dfrac{1}{y+2}+\dfrac{1}{z+2}\)
Biết : 2a = by + cz; 2b = ax + cz; 2c = ax + by và a+b+c≠0
Từ giả thiết \(\Rightarrow\dfrac{a+b+c}{2}=ax+by+cz=ax+2a=a\left(x+2\right)\).
\(\Rightarrow\dfrac{1}{x+2}=\dfrac{2a}{a+b+c}\left(1\right)\)
Tương tự:
\(\dfrac{1}{y+2}=\dfrac{2b}{a+b+c}\left(2\right)\)
\(\dfrac{1}{z+2}=\dfrac{2c}{a+b+c}\left(3\right)\)
Cộng (1),(2) và (3) vế theo vế ta có :
\(M=\dfrac{1}{x+2}+\dfrac{1}{y+2}+\dfrac{1}{z+2}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2.\)
Vậy M=2.
Tìm 2 số a và b biết:
a + b = 12
a.b = -85
Hê hê :)) Bài dễ này :v
Ta có:
a + b = 12 ( S )
a.b = -85 ( P )
Vậy a ; b sẽ là nghiệm của phương trình:
\(x^2-Sx+P=0\)
\(x^2-12x-85=0\)
\(\Rightarrow x_1=17\)
\(x_2=-5\)
Vậy..............
a+b=12 --> a=12-b
(12-b).b=-85--> b2 -12b -85=0
--> b1=17; b2=-5
b1=17 --> a1= -5
b2=-5 --> a2= 17
Ta có a.b = -85 (1)
a+b=12 <=>a=12-b(2)
Thay (2) vào (1) ta có : (12-b)b=-85
<=>12b-b2=-85
<=>-b2+12b+85=0
<=>(b+5)(b-17)=0
<=>\(\left[{}\begin{matrix}b=-5\\b=17\end{matrix}\right.\)
Nếu b=-5 thì a=17
Nếu b=17 thì a=-5
Vậy .....
cho các số x,y thỏa mãn : x+y+xy=8 . tìm min của P= x^2 +y^2
Áp dụng hằng đẳng thức a2+b2\(\ge\)2ab
Dấu "=" xảy ra khi và chỉ khi a=b
=>x2+4\(\ge\)4x
y2+4\(\ge\)4y
2x2+2y2\(\ge\)4xy
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=2\\y=2\\\sqrt{2x^2}=\sqrt{2y^2}\end{matrix}\right.\)<=>x=y=2
Cộng vế với vế các bất đẳng thức ta được:
3x2+3y2+8\(\ge\)4(x+y+xy)=4.8=32
=>3(x2+y2)\(\ge\)24
<=>x2+y2\(\ge\)8
=>Min P=8 khi x=y=2
Vậy...
CMR: \(\frac{a^4+b^4}{2}\)>= ab3 + a3b - a2b2
Ta có \(a^4+b^4-2ab^3-2a^3b+2a^2b^2\) =(a2-ab)2+(b2-ab)2\(\ge0\forall a;b\) suy ra
\(\dfrac{a^4+b^4}{2}\ge ab^3+a^3b-a^2b^2\)(đpcm)
Đẳng thức xảy ra \(\Leftrightarrow a=b\)
a4+b4 \(\ge\)ab(a+b) (1)
1/2 (a4+b4)\(\ge\)a2b2. (2)
(1) -(2)
=>dpcm
1) Tìm số thực x,y,z thõa mãn điều kiện :
\(\sqrt{x}\) + \(\sqrt{y-1}\)+ \(\sqrt{z-2}\) = \(\dfrac{1}{2}\)(x+y+z)
2) Giai phương trình : a) \(\sqrt{3x^2-6x+4}\)+\(\sqrt{2x^2-4x+6}\)=2+2x-x2
b) \(\sqrt{3x^2+6x+12}\)+\(\sqrt{5x^4-10x^2+9}\) =3-4x-2x2
ĐKXĐ: x>=0; y>=1 ; z>=2.
câu 1:Từ giả thiết ta có:
\(2\sqrt{x}+2\sqrt{y-1}+2\sqrt{z-2}=x+y+z\)
\(\Leftrightarrow x-2\sqrt{x}+1+\left(y-1\right)-2\sqrt{y-1}+1+\left(z-2\right)-2\sqrt{z-2}+1=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-1\right)^2+\left(\sqrt{z-2}-1\right)^2=0\)
\(\Leftrightarrow\sqrt{x}=1;\sqrt{y-1}=1;\sqrt{z-2}=1\)
Vậy x=1;y=2;z=3.
Có gì ko hiểu bạn cứ bình luận phía dưới :)
a)\(pt\Leftrightarrow\sqrt{3x^2-6x+4}+\sqrt{2x^2-4x+6}+x^2-2x-2=0\)
\(\Leftrightarrow\sqrt{3x^2-6x+4}-1+\sqrt{2x^2-4x+6}-2+x^2-2x+1=0\)
\(\Leftrightarrow\dfrac{3x^2-6x+4-1}{\sqrt{3x^2-6x+4}+1}+\dfrac{2x^2-4x+6-4}{\sqrt{2x^2-4x+6}+2}+\left(x-1\right)^2=0\)
\(\Leftrightarrow\dfrac{3\left(x-1\right)^2}{\sqrt{3x^2-6x+4}+1}+\dfrac{2\left(x-1\right)^2}{\sqrt{2x^2-4x+6}+2}+\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(\dfrac{3}{\sqrt{3x^2-6x+4}+1}+\dfrac{2}{\sqrt{2x^2-4x+6}-2}+1\right)=0\)
Dễ thấy: \(\dfrac{3}{\sqrt{3x^2-6x+4}+1}+\dfrac{2}{\sqrt{2x^2-4x+6}-2}+1>0\)
\(\Rightarrow\left(x-1\right)^2=0\Rightarrow x-1=0\Rightarrow x=1\)
b)\(\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+9}=3-4x-2x^2\)
\(pt\Leftrightarrow\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+9}+2x^2+4x-3=0\)
\(\Leftrightarrow\sqrt{3x^2+6x+12}-3+\sqrt{5x^4-10x^2+9}-2+2x^2+4x-8=0\)
\(\Leftrightarrow\sqrt{3x^2+6x+12}-3+\sqrt{5x^4-10x^2+9}-2+2x^2+4x+2=0\)
\(\Leftrightarrow\dfrac{3x^2+6x+12-9}{\sqrt{3x^2+6x+12}+3}+\dfrac{5x^4-10x^2+9-4}{\sqrt{5x^4-10x^2+9}+2}+2\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow\dfrac{3\left(x+1\right)^2}{\sqrt{3x^2+6x+12}+3}+\dfrac{5\left(x+1\right)^2\left(x-1\right)^2}{\sqrt{5x^4-10x^2+9}+2}+2\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(x+1\right)^2\left(\dfrac{3}{\sqrt{3x^2+6x+12}+3}+\dfrac{5\left(x-1\right)^2}{\sqrt{5x^4-10x^2+9}+2}+2\right)=0\)
Dễ thấy: \(\dfrac{3}{\sqrt{3x^2+6x+12}+3}+\dfrac{5\left(x-1\right)^2}{\sqrt{5x^4-10x^2+9}+2}+2>0\)
\(\Rightarrow\left(x+1\right)^2=0\Rightarrow x+1=0\Rightarrow x=-1\)
\(\dfrac{\left(\sqrt{5}+2\right)^2-8\sqrt{5}}{2\sqrt{5}-4}\)
\(\dfrac{\left(\sqrt{5}+2\right)^2-8\sqrt{5}}{2\sqrt{5}-4}\)
\(=\dfrac{5+4\sqrt{5}+4-8\sqrt{5}}{2\sqrt{5}-4}\)
\(=\dfrac{9-4\sqrt{5}}{2\sqrt{5}-4}\)
\(=\dfrac{\left(9-4\sqrt{5}\right)\left(2\sqrt{5}+4\right)}{4}\)
\(=\dfrac{\left(9-4\sqrt{5}\right)\cdot2\left(\sqrt{5}+2\right)}{4}\)
\(=\dfrac{\left(9-4\sqrt{5}\right)\left(\sqrt{5}+2\right)}{2}\)
\(=\dfrac{9\sqrt{5}+18-20-8\sqrt{5}}{2}\)
\(=\dfrac{\sqrt{5}-2}{2}\)