Cho \(S=\dfrac{1}{\sqrt{1.2006}}+\dfrac{1}{\sqrt{2.2005}}+...+\dfrac{1}{\sqrt{k\left(2006-k+1\right)}}+...+\dfrac{1}{\sqrt{2006}.1}\)
So sánh \(S\) và \(2.\dfrac{2006}{2007}\)
(@Ace Legona )
Cho \(S=\dfrac{1}{\sqrt{1.2006}}+\dfrac{1}{\sqrt{2.2005}}+...+\dfrac{1}{\sqrt{k\left(2006-k+1\right)}}+...+\dfrac{1}{\sqrt{2006}.1}\)
So sánh \(S\) và \(2.\dfrac{2006}{2007}\)
(@Ace Legona )
Áp dụng bđt AM-GM cho 2 số không âm ta có:
\(\dfrac{1}{\sqrt{1.2006}}>\dfrac{1}{\dfrac{1+2006}{2}}=\dfrac{2}{2007}\)
TT: \(\dfrac{1}{\sqrt{2.2005}}>\dfrac{2}{2007}\)
...
\(\dfrac{1}{\sqrt{2006.1}}>\dfrac{2}{2007}\)
Cộng vế với vế ta được:
\(S>\dfrac{2}{2007}.2006\)
so sánh:
\(\sqrt{2}+\sqrt{3}\) và \(\sqrt{10}\)
Ta có : \(A^2=\left(\sqrt{2}+\sqrt{3}\right)^2=2+3+2\sqrt{6}=5+2\sqrt{6}=5+\sqrt{2^2.6}=5+\sqrt{24}.\)
Lại có : \(B^2=\left(\sqrt{10}\right)^2=10\)
\(\sqrt{24}< \sqrt{25}=>\sqrt{24}< 5=>5+\sqrt{24}< 5+5=>5+\sqrt{24}< 10\)
Mà \(A^2< B^2=>A< B=>\sqrt{2}+\sqrt{3}< \sqrt{10}\)
1>Cho biểu thức: Q= \(\dfrac{2}{2+\sqrt{x}}+\dfrac{1}{2-\sqrt{x}}+\dfrac{2\sqrt{x}}{x-4}\)
a) Rút gọn biểu thức Q
b) tìm x để Q = \(\dfrac{6}{5}\)
c) tìm các giá trị nguyên của x để biểu thức Q có giá trị nguyên
2> Tính:
a) \(\sqrt{16a}+2\sqrt{40a}-3\sqrt{90a}\left(a\ge0\right)\)
b)\(\left(2\sqrt{3}+5\right)\sqrt{3}-\sqrt{60}\)
c)\(\left(\sqrt{99}-\sqrt{8}-\sqrt{11}\right)\sqrt{11}+3\sqrt{22}\)
Các bạn giúp mình với .Cảm ơn!!
đk : \(x\ne4\) ; \(x\ge0\)
1) a) Q = \(\dfrac{2}{2+\sqrt{x}}+\dfrac{1}{2-\sqrt{x}}+\dfrac{2\sqrt{x}}{x-4}\)
Q = \(\dfrac{2}{2+\sqrt{x}}+\dfrac{1}{2-\sqrt{x}}-\dfrac{2\sqrt{x}}{4-x}\)
Q = \(\dfrac{2}{2+\sqrt{x}}+\dfrac{1}{2-\sqrt{x}}-\dfrac{2\sqrt{x}}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)
Q = \(\dfrac{2\left(2-\sqrt{x}\right)+2+\sqrt{x}-2\sqrt{x}}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)
Q = \(\dfrac{4-2\sqrt{x}+2+\sqrt{x}-2\sqrt{x}}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)
Q = \(\dfrac{6-3\sqrt{x}}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\) = \(\dfrac{3\left(2-\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)
Q = \(\dfrac{3}{2+\sqrt{x}}\)
b) ta có Q = \(\dfrac{6}{5}\) \(\Leftrightarrow\) \(\dfrac{3}{2+\sqrt{x}}\) = \(\dfrac{6}{5}\) \(\Leftrightarrow\) \(\dfrac{6}{4+2\sqrt{x}}\) = \(\dfrac{6}{5}\)
\(\Leftrightarrow\) \(4+2\sqrt{x}=5\) \(\Leftrightarrow\) \(2\sqrt{x}=1\) \(\Leftrightarrow\) \(\sqrt{x}=\dfrac{1}{2}\) \(\Leftrightarrow\) \(x=\dfrac{1}{4}\)
c) điều x nguyên ; x \(\ge\) 0 ; x\(\ne\) 4
ta có Q nguyên \(\Leftrightarrow\) \(\dfrac{3}{2+\sqrt{x}}\) nguyên
\(\Rightarrow\) \(2+\sqrt{x}\) là ước của 3 là 3 ; 1 ; -1 ; -3
mà \(2+\sqrt{x}\ge2\) (đk :\(x\ge0\)) vậy còn lại 3
\(\Leftrightarrow\) \(2+\sqrt{x}=3\) \(\Leftrightarrow\) x = 1 (tmđk)
vậy x = 1 nguyên thì Q nguyên
2) a) \(\sqrt{16a}+2\sqrt{40a}-3\sqrt{90a}\) = \(4\sqrt{a}+4\sqrt{10a}-9\sqrt{10a}\)
= \(4\sqrt{a}-5\sqrt{10a}\)
b) \(\left(2\sqrt{3}+5\right)\sqrt{3}-\sqrt{60}\) = \(6+5\sqrt{3}-\sqrt{60}\)
c) \(\left(\sqrt{99}-\sqrt{8}-\sqrt{11}\right)\sqrt{11}+3\sqrt{22}\)
= \(33-2\sqrt{22}-11+3\sqrt{22}\)
= \(22+\sqrt{22}\)
Tính giá trị biểu thức \(M=\dfrac{1}{x+2}+\dfrac{1}{y+2}+\dfrac{1}{z+2}\)
Biết : 2a = by + cz; 2b = ax + cz; 2c = ax + by và a+b+c≠0
Từ giả thiết \(\Rightarrow\dfrac{a+b+c}{2}=ax+by+cz=ax+2a=a\left(x+2\right)\).
\(\Rightarrow\dfrac{1}{x+2}=\dfrac{2a}{a+b+c}\left(1\right)\)
Tương tự:
\(\dfrac{1}{y+2}=\dfrac{2b}{a+b+c}\left(2\right)\)
\(\dfrac{1}{z+2}=\dfrac{2c}{a+b+c}\left(3\right)\)
Cộng (1),(2) và (3) vế theo vế ta có :
\(M=\dfrac{1}{x+2}+\dfrac{1}{y+2}+\dfrac{1}{z+2}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2.\)
Vậy M=2.
1) Tìm số thực x,y,z thõa mãn điều kiện :
\(\sqrt{x}\) + \(\sqrt{y-1}\)+ \(\sqrt{z-2}\) = \(\dfrac{1}{2}\)(x+y+z)
2) Giai phương trình : a) \(\sqrt{3x^2-6x+4}\)+\(\sqrt{2x^2-4x+6}\)=2+2x-x2
b) \(\sqrt{3x^2+6x+12}\)+\(\sqrt{5x^4-10x^2+9}\) =3-4x-2x2
ĐKXĐ: x>=0; y>=1 ; z>=2.
câu 1:Từ giả thiết ta có:
\(2\sqrt{x}+2\sqrt{y-1}+2\sqrt{z-2}=x+y+z\)
\(\Leftrightarrow x-2\sqrt{x}+1+\left(y-1\right)-2\sqrt{y-1}+1+\left(z-2\right)-2\sqrt{z-2}+1=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-1\right)^2+\left(\sqrt{z-2}-1\right)^2=0\)
\(\Leftrightarrow\sqrt{x}=1;\sqrt{y-1}=1;\sqrt{z-2}=1\)
Vậy x=1;y=2;z=3.
Có gì ko hiểu bạn cứ bình luận phía dưới :)
a)\(pt\Leftrightarrow\sqrt{3x^2-6x+4}+\sqrt{2x^2-4x+6}+x^2-2x-2=0\)
\(\Leftrightarrow\sqrt{3x^2-6x+4}-1+\sqrt{2x^2-4x+6}-2+x^2-2x+1=0\)
\(\Leftrightarrow\dfrac{3x^2-6x+4-1}{\sqrt{3x^2-6x+4}+1}+\dfrac{2x^2-4x+6-4}{\sqrt{2x^2-4x+6}+2}+\left(x-1\right)^2=0\)
\(\Leftrightarrow\dfrac{3\left(x-1\right)^2}{\sqrt{3x^2-6x+4}+1}+\dfrac{2\left(x-1\right)^2}{\sqrt{2x^2-4x+6}+2}+\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(\dfrac{3}{\sqrt{3x^2-6x+4}+1}+\dfrac{2}{\sqrt{2x^2-4x+6}-2}+1\right)=0\)
Dễ thấy: \(\dfrac{3}{\sqrt{3x^2-6x+4}+1}+\dfrac{2}{\sqrt{2x^2-4x+6}-2}+1>0\)
\(\Rightarrow\left(x-1\right)^2=0\Rightarrow x-1=0\Rightarrow x=1\)
b)\(\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+9}=3-4x-2x^2\)
\(pt\Leftrightarrow\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+9}+2x^2+4x-3=0\)
\(\Leftrightarrow\sqrt{3x^2+6x+12}-3+\sqrt{5x^4-10x^2+9}-2+2x^2+4x-8=0\)
\(\Leftrightarrow\sqrt{3x^2+6x+12}-3+\sqrt{5x^4-10x^2+9}-2+2x^2+4x+2=0\)
\(\Leftrightarrow\dfrac{3x^2+6x+12-9}{\sqrt{3x^2+6x+12}+3}+\dfrac{5x^4-10x^2+9-4}{\sqrt{5x^4-10x^2+9}+2}+2\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow\dfrac{3\left(x+1\right)^2}{\sqrt{3x^2+6x+12}+3}+\dfrac{5\left(x+1\right)^2\left(x-1\right)^2}{\sqrt{5x^4-10x^2+9}+2}+2\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(x+1\right)^2\left(\dfrac{3}{\sqrt{3x^2+6x+12}+3}+\dfrac{5\left(x-1\right)^2}{\sqrt{5x^4-10x^2+9}+2}+2\right)=0\)
Dễ thấy: \(\dfrac{3}{\sqrt{3x^2+6x+12}+3}+\dfrac{5\left(x-1\right)^2}{\sqrt{5x^4-10x^2+9}+2}+2>0\)
\(\Rightarrow\left(x+1\right)^2=0\Rightarrow x+1=0\Rightarrow x=-1\)
cho a,b,c thỏa mãn a,b,c#0 và ab+bc+ca=0
Tính P=\(\frac{(a+b)(b+c)(c+a)}{abc}\)
Ta có:
\(P=\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\dfrac{\left(ab+ac+b^2+bc\right)\left(c+a\right)}{abc}\)
\(=\dfrac{b^2\left(c+a\right)}{abc}=\dfrac{b\left(c+a\right)}{ac}=\dfrac{bc+ab}{ac}=\dfrac{-ac}{ac}=-1\)
Ta có: \(ab+bc+ca=0\) => \(bc+ca=-ab\)
Ta lại có: P = \(\dfrac{\left(a+b\right)\left(b+c\right)\left(a+c\right)}{abc}\)
= \(\dfrac{\left(a+b\right)\left(ba+bc+ca+c^2\right)}{abc}\) = \(\dfrac{\left(a+b\right)c^2}{abc}\) ( ab + ac+ bc = 0)
= \(\dfrac{ac^2+bc^2}{abc}\) = \(\dfrac{c\left(ac+bc\right)}{abc}\) = \(\dfrac{c.\left(-ab\right)}{abc}\) = \(-1\)
P/s: Bn có thể lm bài này theo 3 cách!
Cho x,y,z#0, và x+y+z=xyz và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\sqrt{3}\)
Tính giá trị biểu thức: \(P=\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\)
Ta có: \(P=\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\)
\(=\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\dfrac{2}{xy}+\dfrac{2}{yz}+\dfrac{2}{xz}-\dfrac{2}{xy}-\dfrac{2}{yz}-\dfrac{2}{xz}\)
\(=\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2-\dfrac{2z}{xyz}-\dfrac{2x}{xyz}-\dfrac{2y}{xyz}\)
\(=3-\dfrac{2\left(x+y+z\right)}{xyz}\)
\(=3-\dfrac{2xyz}{xyz}=3-2=1\)
Vậy P = 1
\(Cho bx^2=ay^2\) và \(x^2+y^2=1.CMRa,\dfrac{x^{2016}}{a^{1008}}+\dfrac{y^{2016}}{b^{1008}}=\dfrac{2}{\left(a+b\right)^{1008}} b, bx^2=ay^2\)
Cho a,b,c là các số thực khác 0 và(a+b+c)\((\frac{1}{a}+\frac{1}{b}+\frac{1}{c})\)=1
Tính giá trị cảu biểu thức: P=(a2004-b2004)(b2005+c2004)(c2006-a20006)
\(1=\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=1+\left(b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{a}{bc}\right)\)
\(\Leftrightarrow\left(b+c\right)\left(\dfrac{bc+ac+ab+a^2}{abc}\right)=0\)
\(\dfrac{\Leftrightarrow\left(b+c\right)\left(a+b\right)\left(a+c\right)}{abc}=0\Rightarrow\left[{}\begin{matrix}a=-c\\a=-b\\b=-c\end{matrix}\right.\)
Xét 3 TH
=> P=0 ( đề bài BT ở giữa có 1 số mũ sai nha )
a+b=6.15
a.b=3
a=?;b=?