a: \(B=\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{2\sqrt{x}+1}{x+\sqrt{x}}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x+2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\)
b: \(\dfrac{A}{B}< \dfrac{7}{4}\)
=>\(\dfrac{x+2\sqrt{x}}{x}:\dfrac{\sqrt{x}+2}{\sqrt{x}+1}< \dfrac{7}{4}\)
=>\(\dfrac{\sqrt{x}+2}{\sqrt{x}}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}+2}-\dfrac{7}{4}< 0\)
=>\(\dfrac{\sqrt{x}+1}{\sqrt{x}}-\dfrac{7}{4}< 0\)
=>\(\dfrac{4\left(\sqrt{x}+1\right)-7\sqrt{x}}{4\sqrt{x}}< 0\)
=>\(\dfrac{-3\sqrt{x}+4}{4\sqrt{x}}< 0\)
=>\(-3\sqrt{x}+4< 0\)
=>\(-3\sqrt{x}< -4\)
=>\(\sqrt{x}>\dfrac{4}{3}\)
=>\(x>\dfrac{16}{9}\)
=>Số nguyên x nhỏ nhất thỏa mãn là x=1