Lời giải:
$\text{VT}=\sum \frac{a^2}{a+b^2}=\sum (a-\frac{ab^2}{a+b^2})$
$=\sum a-\sum \frac{ab^2}{a+b^2}$
$\geq \sum a-\sum \frac{ab^2}{2b\sqrt{a}}$ (theo BĐT AM-GM)
$=\sum a-\frac{1}{2}\sum \sqrt{ab^2}$
$\geq \sum a-\frac{1}{2}\sum \frac{ab+b}{2}$ (AM-GM)
$=\frac{3}{4}\sum a-\frac{1}{4}\sum ab$
Giờ ta chỉ cần cm $\sum a\geq \sum ab$ là bài toán được giải quyết
Thật vậy:
Đặt $\sum ab=t$ thì hiển nhiên $0< t\leq 3$ theo BĐT AM-GM
$(\sum a)^2-(\sum ab)^2=3+2t-t^2=(3-t)(t+1)\geq 0$ với mọi $0< t\leq 3$
$\Rightarrow \sum a\geq \sum ab$
Vậy ta có đcpcm.
Dấu "=" xảy ra khi $a=b=c$