\(A=x-4\sqrt{x+1}=\left[\left(x+1\right)-4\sqrt{x+1}+4\right]-5\)
\(=\left(\sqrt{x+1}-2\right)^2-5\ge-5\)
Dấu đẳng thức xảy ra \(\Leftrightarrow\sqrt{x+1}-2=0\Leftrightarrow x=3\)
Vậy A đạt giá trị nhỏ nhất bằng -5 tại x = 3
Đặt \(t=\sqrt{3x+2}\Rightarrow x=\frac{t^2-2}{3}\)\(\Rightarrow B=\frac{t^2-2}{3}-t=\frac{t^2-3t-2}{3}=\frac{\left(t-\frac{3}{2}\right)^2-\frac{17}{4}}{3}\ge-\frac{17}{12}\)
Dấu đẳng thức xảy ra \(\Leftrightarrow t=\frac{3}{2}\Leftrightarrow\sqrt{3x+2}=\frac{3}{2}\Leftrightarrow x=\frac{1}{12}\)
Vậy B đạt giá trị nhỏ nhất bằng \(-\frac{17}{12}\) tại \(x=\frac{1}{12}\)