Cho các số thực x,y,z thỏa mãn: \(x+y\le z\). CMR: \(\left(x^2+y^2+z^2\right).\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\ge\frac{27}{2}\)
cho x, y >0. thỏa mãn: x+y=1. CM: \(3\left(3x-2\right)^2+\frac{8x}{y}\ge7\)
cho x,y,z là các số thực dương thỏa x+y+z=4 CMR
\(\frac{1}{x^2+4yz}+\frac{1}{y^2+4zx}+\frac{1}{z^2+4xy}< \frac{1}{xyz}\)
Choi x,y,z thoả mãn điều kiện xyz=144. Chứng minh biểu thức sau có già trị nguyên
P=\(\frac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+12}+\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\frac{12\sqrt{z}}{\sqrt{xz}+12\sqrt{x}+12}\)
Cho các số thực dương x , y , z thỏa mãn \(x^2+y^2+z^2\ge\frac{1}{3}\)
Chứng minh rằng \(\frac{x^3}{2x+3y+5z}+\frac{y^3}{2y+3z+5x}+\frac{z^3}{2z+3x+5y}\ge\frac{1}{30}\)
Cho 3 số thực dương x , y , z thỏa mãn \(x+y+z\ge3\)
Chứng minh rằng: \(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{xz}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{3}{2}\)
a)tìm cặp x,y nguyên dương: \(15x^2-7y^2=9\)
b)cho \(-\frac{3}{2}\le x\le\frac{3}{2};x\ne0\)và \(\sqrt{3+2x}-\sqrt{3-2x}=a\) tính \(P=\frac{\sqrt{6+2\sqrt{9-4x^2}}}{x}\) theo a
c)cho a,b,c là 3 sô dương thỏa mãn \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=2\) tìm GTLN của P=abc
(đề này của Q.Ngãi nha)
hpt
\(\left\{\begin{matrix}\frac{x+y}{xyz}=\frac{1}{2}\\\frac{y+z}{xyz}=\frac{5}{6}\\\frac{x+z}{xyz}=\frac{2}{3}\end{matrix}\right.\)
Giai hệ phương trình:
a) \(\begin{cases}\frac{y}{x}+\frac{x}{y}=\frac{26}{5}\\x^2-y^2=24\end{cases}\)
b) \(\begin{cases}x-2y+\frac{x}{y}=6\\x^2-2xy-6y=0\end{cases}\)