\(\left(2x-2\right)^3=\left(2x-2\right)^{12}\)
\(\Rightarrow\left(2x-2\right)^{15}\)
\(\Rightarrow2x-2=0\Rightarrow2x=2\Rightarrow x=1\)
\(\left(2x-2\right)^3=\left(2x-2\right)^{12}\)
\(\Rightarrow\left(2x-2\right)^9=1\)
\(\Rightarrow2x-2=1\)
\(\Rightarrow2x=3\Rightarrow x=\dfrac{3}{2}\)
\(\left(2x-2\right)^3=\left(2x-2\right)^{12}\\ \Rightarrow\left[{}\begin{matrix}2x-2=0\\2x-2=1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{3}{2}\end{matrix}\right.\)
\(\left(2x-2\right)^3=\left(2x-2\right)^{12}\)
\(\Rightarrow\left[{}\begin{matrix}2x-2=0\\2x-2=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{3}{2}\end{matrix}\right.\)
Ta có: \(\left(2x-2\right)^{12}=\left(2x-2\right)^3\)
\(\Leftrightarrow\left(2x-2\right)^3\cdot\left[\left(2x-2\right)^9-1\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-2=0\\2x-2=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{3}{2}\end{matrix}\right.\)