`x^3 -25x=0`
``x.(x-5).(x+5)=0`
`=>`\(\left[{}\begin{matrix}x=0\\x-5=0\\x+5=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)
__________________________________
`4x.(x+1)=8.(x+1)`
`4x.(x+1)-8.(x+1)=0`
`(x+1).(x-2)=0`
`=>`\(\left[{}\begin{matrix}x+1=0\\x-2=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)
______________________________
`4-x=4.(x-4)^2`
`4-x-4.(x-4)^2 = 0`
`4-x-4.(x^2 - 8x + 16)=0`
`4-x-4x^2 +32x - 64=0`
`-4x^2 - 31x -60=0`
`4x^2 - 31x +60=0`
`(4+x).(15-4x)=0`
`=>`\(\left[{}\begin{matrix}4+x=0\\15-4x=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=-4\\x=\dfrac{15}{4}\end{matrix}\right.\)
a) \(x^3-25x=0\)
\(x\left(x^2-25\right)\)
=> \(\left[{}\begin{matrix}x=0\\x^2-25=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
b) \(4x\left(x+1\right)=8\left(x+1\right)\)
Ta thấy (x+1) chung và 2 biểu thức trên bằng nhau
=> 4x=8
=> x=2
a)
\(< =>x\left(x^2-25\right)=0< =>\left[{}\begin{matrix}x=0\\x^2-25=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
b)
\(< =>4x\left(x+1\right)-8\left(x+1\right)=0< =>\left(4x-8\right)\left(x+1\right)=0< =>\left[{}\begin{matrix}4x-8=0\\x+1=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)c)
\(< =>4-x-4\left(x-4\right)^2=0< =>\left(x-4\right)\left[1+4\left(x-4\right)\right]=0< =>\left(x-4\right)\left(1+4x-16\right)=0< =>\left(x-4\right)\left(-15+4x\right)=0< =>\left[{}\begin{matrix}x-4=0\\-15+4x=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=4\\x=\dfrac{15}{4}\end{matrix}\right.\)
a) \(x^3-25x=0\)
\(\Leftrightarrow x\left(x+5\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\\x=5\end{matrix}\right.\)
`=>`\(x\in\left\{0;-5;5\right\}\)
b) \(4x\left(x+1\right)=8\left(x+1\right)\)
\(\Leftrightarrow4x^2+4x=8x+8\)
`<=>`\(4x^2+4x-8x=8\)
`<=>`\(4x^2-4x=8\)
`<=>`\(4x^2-4x-8=0\)
`<=>`\(4\left(x-2\right)\left(x+1\right)=0\)
`<=>`\(\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\)
`=>`\(x\in\left\{2;-1\right\}\)
c) \(4-x=4\left(x-4\right)^2\)
`<=>`\(4-x=4x^2-32x+64\)
\(\Leftrightarrow4-x-4x^2+32x-64=0\)
\(\Leftrightarrow4+31x-4x^2-64=0\)
\(\Leftrightarrow-60+31x-4x^2=0\)
\(\Leftrightarrow4x^2-16x-15x+60=0\)
\(\Leftrightarrow4x\left(x-4\right)-15\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\4x-15=0\end{matrix}\right.\)
`=>`\(x\in\left\{\dfrac{15}{4};4\right\}\)