Hệ có nghiệm duy nhất khi:
\(\dfrac{-m}{2}\ne\dfrac{1}{1}\Rightarrow m\ne-2\)
Hệ có nghiệm duy nhất khi:
\(\dfrac{-m}{2}\ne\dfrac{1}{1}\Rightarrow m\ne-2\)
\(\left\{{}\begin{matrix}2x-y=1\\mx+y=5\end{matrix}\right.\)
tìm m để hệ có nghiệm duy nhất (x,y) thỏa mãn x>0, y<0
cho hệ phương trình \(\left\{{}\begin{matrix}x+my=m+1\\mx+y=2m\end{matrix}\right.\)(m là tham số ).Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn \(\left\{{}\begin{matrix}x\ge2\\y\ge1\end{matrix}\right.\)
Bài 2 : Cho hệ phương trình:
\(\left\{{}\begin{matrix}mx+y=5\left(1\right)\\2mx+3y=6\left(2\right)\end{matrix}\right.\)
Tìm m để hệ có nghiệm duy nhất(x;y) thỏa mãn:
(2m - 1)x + (m + 1)y = m (3)
Tìm m để hệ có nghiệm duy nhất thỏa mãn x, y là số nguyên
\(\left\{{}\begin{matrix}mx-2y=2m-1\\2x-my=9-3m\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x-2y=5\\mx-y=4\end{matrix}\right.\)
1. Tìm m để hệ có nghiệm duy nhất (x,y) trong đó x,y trái dấu
2. Tìm m để hệ có nghiệm duy nhất (x,y) thỏa mãn x=|y|
\(\left\{{}\begin{matrix}4x+my=2\\mx+y=1\end{matrix}\right.\)
tìm m để hệ có nghiệm duy nhất thỏa mãn x+y<2
\(\left\{{}\begin{matrix}x+2y=5\\mx+y=4\end{matrix}\right.\)
tìm m để hệ có nghiệm duy nhất (x,y) mà x,y trái dấu
a)Tìm nghiệm duy nhất
\(\left\{{}\begin{matrix}mx+2y=7\\2x+3y=5\end{matrix}\right.\)
b) Vô nghiệm
\(\left\{{}\begin{matrix}2x-y=m\\-4x+2y=4\end{matrix}\right.\)
\(\left\{{}\begin{matrix}mx-3y=4\\x+y=1\end{matrix}\right.\)
tìm m để hệ có nghiệm duy nhất (x;y) để \(x^2+y^2\) đạt min.