\(\left(\sqrt{5}+1\right)\cdot\sqrt{3-\sqrt{5}}\)
\(=\left(\sqrt{5}+1\right)\cdot\dfrac{\sqrt{6-2\sqrt{5}}}{\sqrt{2}}\)
\(=\dfrac{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}{\sqrt{2}}=\dfrac{5-1}{\sqrt{2}}=\dfrac{4}{\sqrt{2}}=2\sqrt{2}\)
\(\left(\sqrt{5}+1\right)\cdot\sqrt{3-\sqrt{5}}\)
\(=\left(\sqrt{5}+1\right)\cdot\dfrac{\sqrt{6-2\sqrt{5}}}{\sqrt{2}}\)
\(=\dfrac{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}{\sqrt{2}}=\dfrac{5-1}{\sqrt{2}}=\dfrac{4}{\sqrt{2}}=2\sqrt{2}\)
\(\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\) + \(\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}\) - \(\dfrac{\sqrt{5}+1}{\sqrt{5}-1}\)
Tính:
1) \(\dfrac{1}{1+\sqrt{5}}+\dfrac{1}{\sqrt{5}-1}\)
2) \(\dfrac{1}{\sqrt{5}+\sqrt{3}}-\dfrac{1}{\sqrt{5}-\sqrt{3}}\)
3) \(\dfrac{1}{\sqrt{2}-\sqrt{3}}-\dfrac{1}{\sqrt{3}+\sqrt{2}}\)
4) \(\dfrac{1}{3+\sqrt{5}}+\dfrac{1}{\sqrt{5}-3}\)
5) \(\dfrac{1}{\sqrt{2}-\sqrt{6}}-\dfrac{1}{\sqrt{6}+\sqrt{2}}\)
LM CHI TIẾT GIÚP MK NHÉ
Bài 1: Chứng minh đẳng thức:
a) \(\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=8\)
b) \(\frac{\sqrt{3}+1}{\sqrt{3}-1}=2+\sqrt{3}\)
c) \(\left(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}\right):\frac{\sqrt{5}+1}{\sqrt{5}-1}=4\left(3-\sqrt{5}\right)\)
chứng minh đẳng thức:
a) \(\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=8\)
b) \(\frac{\sqrt{3}+1}{\sqrt{3}-1}=2+\sqrt{3}\)
c) \(\left(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}\right):\frac{\sqrt{5}+1}{\sqrt{5}-1}=4\left(3-\sqrt{5}\right)\)
thực hiện phép tính: a)\(\left(\frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\frac{\sqrt{15}+\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}\)
b)\(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}+\frac{\sqrt{5}+1}{\sqrt{5}-1}\)
c)\(2\sqrt{18\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\sqrt{5\sqrt{48}}\)
d)\(\left(2\sqrt{5}+\sqrt{12}\right)\left(\sqrt{3}-\sqrt{5}\right)\)
e)\(\sqrt{2}+\sqrt{\frac{1}{2}}+\sqrt{72}-\sqrt{\frac{3}{2}}\)
f)\(\sqrt{2}\sqrt{2+\sqrt{3}}-2\left(\sqrt{3}-1\right)\)
g)\(\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}-\left(2\sqrt{3}-2007\right)\)
B1. ko sử dụng máy tính, rút gọn
\(D=\dfrac{1}{2}\sqrt{48}-\dfrac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\dfrac{1}{3}}\)
\(E=\sqrt{\dfrac{3-\sqrt{5}}{3+\sqrt{5}}}-\sqrt{\dfrac{3+\sqrt{5}}{3-\sqrt{5}}}\)
\(F=\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{5}}-\sqrt{2}\)
B2.
\(G=\dfrac{\sqrt{x}}{x-\sqrt{x}+1}\)
so sánh G với 1
B3. giải pt
\(\left\{{}\begin{matrix}\left(x-3\right)\left(2y+5\right)=\left(2x+7\right)\left(y-1\right)\\\left(4x+1\right)\left(3y-6\right)=\left(6x-1\right)\left(2y+3\right)\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(x+y\right)\left(x-1\right)=\left(x-y\right)\left(x+1\right)+2xy\\\left(y-x\right)\left(y+1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\)
\(\)1) \(\dfrac{5+2\sqrt{5}}{\sqrt{5}+\sqrt{2}}\)
2) \(\dfrac{2\sqrt{6}-\sqrt{10}}{4\sqrt{3}-2\sqrt{5}}\)
3) \(\dfrac{1}{2\sqrt{2}-3\sqrt{3}}\)
4) \(\sqrt{\dfrac{3-\sqrt{5}}{3+\sqrt{5}}}\)
\(\left(1+\sqrt{3}-\sqrt{2}\right)\left(1+\sqrt{3}-\sqrt{2}\right)\)
\(\left(1+\dfrac{5-\sqrt{5}}{1-\sqrt{5}}\right)\left(\dfrac{5+\sqrt{5}}{1+\sqrt{5}}+1\right)\)
\(\left(\dfrac{1}{\sqrt{3}-\sqrt{2}}\right)\left(\dfrac{1}{\sqrt{3}-\sqrt{2}}\right)\)
Toán số 9, liên quan đến dạng căn. Các bạn giúp mình nhé, xin cảm ơn rất nhiều. :)
1) \(\left(\sqrt{3-2\sqrt{\sqrt{3}-1}}+\frac{\sqrt{3}-1}{\sqrt{2}}\right)\sqrt{\sqrt{3}-1}\)
2) \(\left(\sqrt{5+2\sqrt{9\sqrt{5}-19}}-\sqrt{7-\sqrt{5}}\right):2\sqrt{\sqrt{5}-2}\)
3) \(\frac{\sqrt{10+6\sqrt{2}}-\sqrt{10-6\sqrt{2}}}{\sqrt{5-\sqrt{7}}}-\sqrt{9+2\sqrt{20}}\)
4) \(\frac{\sqrt{5+\sqrt{3}}+\sqrt{5-\sqrt{3}}}{\sqrt{5+\sqrt{22}}}-\frac{\sqrt{6-\sqrt{24}}}{\sqrt{3+\sqrt{3}}-\sqrt{3-\sqrt{3}}}\)
5) \(\sqrt{5+2\sqrt{14\sqrt{5}-26}}-\sqrt{4\sqrt{5}-1+\sqrt{80-8\sqrt{5}}}\)
6) \(\frac{\sqrt{11+\sqrt{5}}+\sqrt{11-\sqrt{5}}}{\sqrt{11+2\sqrt{29}}}-\sqrt{3-2\sqrt{2}}\)
Tính
a/\(\left(\frac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\frac{\sqrt{216}}{3}\right).\frac{1}{\sqrt{6}}\)
b/\(\left(\frac{5}{4-\sqrt{11}}+\frac{1}{3+\sqrt{7}}-\frac{6}{\sqrt{7}-2}-\frac{\sqrt{7}-5}{2}\right)\)
c/\(\left(\frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}\)
d/\(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}+1}{\sqrt{5}-1}\)