\(a,=\left(\dfrac{\sqrt{7}\left(\sqrt{2}-1\right)}{1-\sqrt{2}}+\dfrac{\sqrt{5}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}\right).\dfrac{\sqrt{7}-\sqrt{5}}{1}\\ =\left(\dfrac{-\sqrt{7}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}+\dfrac{-\sqrt{5}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}\right).\dfrac{\sqrt{7}-\sqrt{5}}{1}\\ =\dfrac{-\sqrt{7}-\sqrt{5}}{1}.\dfrac{\sqrt{7}-\sqrt{5}}{1}=-\left(7-5\right)=-2\)
\(b,=\left(\dfrac{\sqrt{7}}{7}-\dfrac{4\sqrt{7}}{7}+\sqrt{7}\right):\sqrt{7}=\left(\dfrac{\sqrt{7}-4\sqrt{7}+7\sqrt{7}}{7}\right).\dfrac{1}{\sqrt{7}}=\dfrac{4\sqrt{7}}{7}.\dfrac{1}{\sqrt{7}}=\dfrac{4}{7}\)