b1,tính
a,\(\sqrt{\left(\sqrt{7}-4\right)^2}+\sqrt{8-2\sqrt{7}}\)
b,\(\sqrt{\left(\sqrt{5}-2\right)^2}+\sqrt{6+2\sqrt{5}}\)
b2,rút gọn các biểu thức sau
a,\(5\sqrt{\dfrac{1}{5}}+\dfrac{1}{2}\sqrt{20}+\sqrt{5}\)
b,\(\sqrt{\dfrac{1}{2}}+\sqrt{4,5}+\sqrt{12,5}\)
c,\(\sqrt{20}-\sqrt{45}+3\sqrt{18}+\sqrt{72}\)
d,\(0,1\times\sqrt{200}+2\times\sqrt{0,08}+0,4\times\sqrt{50}\)
Bài 1:
a/
$\sqrt{(\sqrt{7}-4)^2}+\sqrt{8-2\sqrt{7}}$
$=|\sqrt{7}-4|+\sqrt{7+1-2\sqrt{7}}=|\sqrt{7}-4|+\sqrt{(\sqrt{7}-1)^2}$
$=4-\sqrt{7}+|\sqrt{7}-1|=4-\sqrt{7}+\sqrt{7}-1=3$
b/
\(\sqrt{(\sqrt{5}-2)^2}+\sqrt{6+2\sqrt{5}}\\ =|\sqrt{5}-2|+\sqrt{5+1+2\sqrt{5}}\\ =\sqrt{5}-2+\sqrt{(\sqrt{5}+1)^2}\\ =\sqrt{5}-2+|\sqrt{5}+1|=\sqrt{5}-2+\sqrt{5}+1=2\sqrt{5}-1\)
Bài 2:
a. $=\sqrt{5}+\sqrt{5}+\sqrt{5}=3\sqrt{5}$
b. $=\frac{\sqrt{2}}{2}+\frac{3\sqrt{2}}{2}+\frac{5\sqrt{2}}{2}$
$=\frac{\sqrt{2}+3\sqrt{2}+5\sqrt{2}}{2}=\frac{9\sqrt{2}}{2}$
c.
$=2\sqrt{5}-3\sqrt{5}+9\sqrt{2}+6\sqrt{2}$
$=-\sqrt{5}+15\sqrt{2}$
d.
$=0,1.10\sqrt{2}+2.\frac{\sqrt{2}}{5}+0,4.5\sqrt{2}$
$=\sqrt{2}+0,4\sqrt{2}+2\sqrt{2}$
$=\sqrt{2}(1+0,4+2)=3,4\sqrt{2}$