`Q=[2\sqrt{x}]/[\sqrt{x}+1]` `ĐK: x >= 0`
`Q=[2\sqrt{x}+2-2]/[\sqrt{x}+1]`
`Q=2-2/[\sqrt{x}+1]`
Để `Q` nhận giá trị nguyên thì `2-2/[\sqrt{x}+1] in ZZ`
`=>2/[\sqrt{x}+1] in ZZ`
`=>\sqrt{x}+1 in Ư_2`
Mà `Ư_2 ={+-1;+-2}`
`@\sqrt{x}+1=1<=>\sqrt{x}=0<=>x=0` (t/m)
`@\sqrt{x}+1=-1<=>\sqrt{x}=-2` (vô lí)
`@\sqrt{x}+1=2<=>\sqrt{x}=1<=>x=1` (t/m)
`@\sqrt{x}+1=-2<=>\sqrt{x}=-3` (vô lí)