a: \(P=\dfrac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
b: Để P=-1 thì \(\sqrt{x}-1=-\sqrt{x}\)
=>x=1/4(nhận)
a: \(P=\dfrac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
b: Để P=-1 thì \(\sqrt{x}-1=-\sqrt{x}\)
=>x=1/4(nhận)
P=\(\left(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}+\dfrac{\sqrt{x}+1}{1-\sqrt{x}}\right):\left(\dfrac{3}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}-\dfrac{2}{x-1}\right)\)
a) Rút gọn P
b) Tìm x để P = \(\sqrt{x}-1\)
13. P= \(\dfrac{x+2}{x\sqrt{x}+1}+\dfrac{\sqrt{x}-1}{x-\sqrt{x}+1}-\dfrac{\sqrt{x}-1}{x-1}\)
a. Rút gọn P
b. Tìm x để \(\left|P\right|\)=\(\dfrac{2}{3}\)
cho bt
P=(\(\dfrac{x-2\sqrt{x}+1}{\sqrt{x}-1}\)+\(\dfrac{2\sqrt{x}+2}{\sqrt{x}+1}\)):\(\dfrac{x+1+2\sqrt{x}}{x-1}\)
a)Rút gọn P
b)Tìm x để P<0
Cho P= \((\dfrac{1}{1-\sqrt{2}}-\dfrac{1}{\sqrt{x}}):(\dfrac{2x+\sqrt{x}-1}{\sqrt{x}-x\sqrt{x}}+\dfrac{2x\sqrt{x}+x-\sqrt{x}}{\sqrt{x}+x^{2}})\)
a) Rút gọn P
b) so sánh P với \(\dfrac{3}{4}\).
c) tìm x để P=1
Cho bt: P=\(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}.\left(1-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)\)
a, Rút gọn P
b, P khi x = 6-2\(\sqrt{5}\)
giải hộ e với e đang cần gấp để đối chiếu kết quả!
\(P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+1}\)(x>0,x khác 1)
a. Rút gọn biểu thức P
b. Tìm các giá trị của x để \(P>\dfrac{1}{2}\)
Cho P =(\(\dfrac{2\sqrt{x}}{\sqrt{x}+3}-\dfrac{\sqrt{x}}{3-\sqrt{x}}-\dfrac{3x+3}{x-9}\)):\(\dfrac{\sqrt{x}+3}{\sqrt{x}-3}\) với x≥0,x≠9
a) rút gọn P
b) tìm x bt P=-1/3
c) So sánh P và -1
Cho biểu thức \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2}{x-\sqrt{x}}\right):\dfrac{1}{\sqrt{x}-1}\left(x>0,x\ne1\right)\)
a, Rút gọn P
b, Tìm x để P=1
Cho biểu thức \(P=\left(\dfrac{2\sqrt{x}}{x\sqrt{x}-x+\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right):\left(1+\dfrac{\sqrt{x}}{x+1}\right)\)
a) Rút gọn P
b) Tìm các giá trị của x để P < 0