Thay công thức trung tuyến vào ta được:
\(m_a^2+m_b^2+m_c^2=a^2+b^2+c^2-\frac{1}{4}\left(a^2+b^2+c^2\right)=\frac{3}{4}\left(a^2+b^2+c^2\right)\)
Thay công thức trung tuyến vào ta được:
\(m_a^2+m_b^2+m_c^2=a^2+b^2+c^2-\frac{1}{4}\left(a^2+b^2+c^2\right)=\frac{3}{4}\left(a^2+b^2+c^2\right)\)
Cho tam giác ABC, biết \(\overrightarrow{a}=\overrightarrow{AB}=\left(a_1;a_2\right)\) và \(\overrightarrow{b}=\overrightarrow{AC}=\left(b_1;b_2\right)\). Để tính diện tích S của tam giác ABC. Một học sinh làm như sau:
1) Tính cosA= \(\frac{\overrightarrow{a}.\overrightarrow{b}}{\left|\overrightarrow{a}\right|.\left|\overrightarrow{b}\right|}\)
2) Tính sinA= \(\sqrt{1-cos^2A}=\sqrt{1-\frac{\left(\overrightarrow{a}.\overrightarrow{b}\right)^2}{\left(\left|\overrightarrow{a}\right|^2.\left|\overrightarrow{b}\right|^2\right)}}\)
3) S= \(\frac{1}{2}AB.AC.sinA=\frac{1}{2}\sqrt{\left|\overrightarrow{a}\right|^2\left|\overrightarrow{b}\right|^2}-\left(\overrightarrow{a}.\overrightarrow{b}\right)^2\)
4) S= \(\frac{1}{2}\sqrt{\left(a^{2_1}+a^{2_2}\right)\left(b^{2_1}+b^{2_2}\right)-\left(a_1b_1+a_2b_2\right)^2}\)
S=\(\frac{1}{2}\sqrt{\left(a_1b_2+a_2b_1\right)^2}\)
S=\(\frac{1}{2}\left(a_1b_2-a_2b_1\right)\)
Cho tam giác ABC. Gọi ma, mb, mc là độ dài các đường trung tuyến lần lượt ứng với các cạnh BC = a, CA = b, AB = c. Tính giá trị nhỏ nhất của \(\frac{\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)}{abc\left(m_a+m_b+m_c\right)}\)
Độ dài trung tuyến \(m_c\) ứng với cạnh c của tam giác ABC bằng biểu thức nào sau đây ?
A. \(\frac{b^2+a^2}{2}-\frac{c^2}{4}\)
B.\(\sqrt{\frac{b^2+a^2}{2}+\frac{c^2}{4}}\)
C. \(\frac{1}{2}\sqrt{\left(2b^2\right)+2a^2-c^2}\)
D. \(\sqrt{\frac{b^2+a^2-c^2}{4}}\)
Tính góc A của tam giác ABC biết:
a) \(\dfrac{b^3+c^3-a^3}{b+c-a}=a^2\)
b) \(cosB=\dfrac{\left(a+b\right)\left(b+c-a\right)\left(c+a-b\right)}{2abc}\)
c) \(a^4-2\left(b^2+c^2\right)a^2+b^4+b^2c^2+c^4=0\)
Cho tam giác ABC có AB = \(3\sqrt{3}\) , BC= \(6\sqrt{3}\) , CA = 9 Gọi D là trung điểm BC tính bán kính R của đường tròn ngoại tiếp tam giác ABD
Tam giác ABC có trọng tâm G. Hai trung tuyến BM = 6 , CN = 9 và góc BGC = 120. Tính cạnh AB
Tam giác ABC có AB = c , BC = a , CA =b . Các cạnh a,b,c liên hệ với nhau = đẳng thức \(b.\left(b^2-a^2\right)=c.\left(a^2-c^2\right)\) khi đó góc BAC bằng bao nhiêu độ
Cho tam giác ABC đều cạnh = a . Tập hợp các điểm M thỏa mãn \(4MA^2+MB^2+MC^2=\frac{5a^2}{2}\) nằm trên 1 đường tròn (C) có bán kính R. Tính R
Cho tam giác ABC thỏa mãn: \(a\left(a^2-b^2\right)=c\left(b^2-c^2\right)\). Tính góc B
Câu 1: Cho tam giác ABC. Khẳng định nào sau đây đúng ?
A: \(h_a=R.sinB.sinC\)
B: \(h_a=4R.sinB.sinC\)
C: \(h_a=2R.sinB.sinC\)
D: \(h_a=\frac{1}{4}R.sinB.sinC\)
Câu 2: Cho tam giác ABC nội tiếp (O,R). Diện tích tam giác ABC bằng ?
A: \(\frac{1}{2}R^2\left(sin2A+sin2B+sin2C\right)\)
B: \(R^2\left(sin2A+sin2B+sin2C\right)\)
C: \(\frac{1}{2}R^2\left(sinA+sinB+sinC\right)\)
D: \(R^2\left(sinA+sinB+sinC\right)\)
Câu 3: Cho tam giác ABC, M và N lần lượt thuộc 2 tia AB và AC (M, N ≠ A). Khẳng định nào sau đây đúng ?
A: \(\frac{S_{AMN}}{S_{ABC}}=3\frac{AM}{AB}.\frac{AN}{AC}\)
B: \(\frac{S_{AMN}}{S_{ABC}}=2\frac{AM}{AB}.\frac{AN}{AC}\)
C: \(\frac{S_{AMN}}{S_{ABC}}=\frac{1}{2}\frac{AM}{AB}\frac{AN}{AC}\)
D: \(\frac{S_{AMN}}{S_{ABC}}=\frac{AM}{AB}\frac{AN}{AC}\)
Câu 4: Cho tam giác ABC có a=BC, b=AC, c=AB. Khẳng định nào sau đây là đúng ?
A: a =b.cosB+c.cosC
B: a =b.cosC+b.cosB
C: a =b.sinB+c.sinC
D: a=b.sinC+c.sinB
CMR:
a, \(r=\frac{a\cdot\sin\frac{B}{2}\cdot\sin\frac{C}{2}}{\cos\frac{A}{2}}\)
b, \(S=\frac{1}{2}\sqrt{\overrightarrow{AB}^2\cdot\overrightarrow{AC}^2}-\left(\overrightarrow{AB}\cdot\overrightarrow{AC}\right)^2\)