\(2c=F_1F_2=\frac{2S}{3}=2\sqrt{14}\Rightarrow c=\sqrt{14}\)
Gọi phương trình elip có dạng:
\(\frac{x^2}{a^2}+\frac{y^2}{a^2-c^2}=1\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{a^2-14}=1\)
Do (E) qua \(A\left(4;3\right)\) nên ta có:
\(\frac{16}{a^2}+\frac{9}{a^2-14}=1\Leftrightarrow a^2\left(a^2-14\right)=16\left(a^2-14\right)+9a^2\)
\(\Leftrightarrow a^4-39a^2+224=0\Rightarrow\left[{}\begin{matrix}a^2=7< c^2\left(l\right)\\a^2=32\end{matrix}\right.\)
Vậy pt elip: \(\frac{x^2}{32}+\frac{y^2}{18}=1\)