Bài 1:
Tại x = -1 thì B = 2.(-1)2 - 3.(-1) + 5 = 10
Bài 2:
a) 23x = 910
<=> x = \(\frac{910}{23}\)
b) |3 - 2x| = 5
<=> \(\left[{}\begin{matrix}3-2x=5\\3-2x=-5\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=-1\\x=4\end{matrix}\right.\)
Bài 1:
Tại x = -1 thì B = 2.(-1)2 - 3.(-1) + 5 = 10
Bài 2:
a) 23x = 910
<=> x = \(\frac{910}{23}\)
b) |3 - 2x| = 5
<=> \(\left[{}\begin{matrix}3-2x=5\\3-2x=-5\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=-1\\x=4\end{matrix}\right.\)
Giải phương trình ( Dạng |A| = B và |A|=|B| )
1. |2x - 3| = x - 5
2. | 3x+2| = x+1
3. |2x+1 |= 7-x
4. |2x-5| = x+1
5. | 6x-2| = 3x-4
6. |3x-2| = x-2
7. |2x+3| = 1
8. | 2-x| = 2x-1
9. | 2x-1| = x-3
10. 2| x - 1| = x+2
Giải pt dạng |A|=B và |A|=|B|
1. |x2-1|=1-4x
2. |4x+1|=x2+2x-4
3. |3x-5|=2x2+x-3
4. x2-2x+8=|x2-1|
5. x2+5x-|3x-2|-5=0
6. x2-5|x-1|-1=0
7. |3x2-2|=|6-x2|
Tìm giá trị lớn nhất của các biểu thức :
a, \(A=3x^2\left(8-x^2\right)\) với \(-2\sqrt{2}\le x\le2\sqrt{2}\)
b, B=(2x-1)(3-x) với 0,5\(\le x\le3\)
c, C=x(3-\(\sqrt{3}x\)) với 0\(\le x\le\sqrt{3}\)
d, D= 4x(8-5x) với 0\(\le x\le\frac{8}{5}̸\)
e, E= 4(x-1)(8-5x) với \(1\le x\le\frac{8}{5}\)
^-^
2/ Giải phương trình chứa nhiều dấu giá trị tuyệt đối:
1. \(\frac{\left|2x+7\right|}{x-1}=\left|3x-1\right|\)
2. \(\frac{\left|3x-1\right|}{x+2}=\left|x-3\right|\)
3. \(\frac{\left|5x-2\right|}{x+3}=\left|x-2\right|\)
4. |x2-4|+|x|=2
5. |x-1|+|2x+3|=0\
6. |x-1|+|x2-1|=0
7. |x2-1|+|x2-3x+2|=0
8.|5x+2|+|3x-4|=4x+5
9. |x|+|x+1|=|3-2x|
10. |5-x|+|x-1|=|x-6|
2/ Giải phương trình chứa nhiều dấu giá trị tuyệt đối:
1.\(\frac{\left|2x+7\right|}{x-1}=\left|3x-1\right|\)
2. \(\frac{\left|3x-1\right|}{x+2}=\left|x-3\right|\)
3. \(\frac{\left|5x-2\right|}{x+3}=\left|x-2\right|\)
4. |x2-4|+|x|=2
5. |x-1|+|2x+3|=0
6. |x-1|+|x2-1|=0
7. |x2-1|+|x2-3x+2|=0
8.|5x+2|+|3x-4|=4x+5
9. |x|+|x+1|=|3-2x|
10. |5-x|+|x-1|=|x-6|
Bài 2: Tìm các giá trị của m để mỗi biểu thức sau luôn âm:
a) (m - 4)x2 + (m + 1)x + 2m - 1
b) (m + 2)x2 + 5x -4
c) mx2 - 12x - 5
d) -x2 + 2m\(\sqrt{2x}\) -2m2- 1
f) (m - 2)x2 - 2( m - 3 )x + m - 1
1. |x-1|=2x-1
2. |x-2|=2-x
3. |3x-5| =|2x+1|
4. |7x-4|=|3x-4|
5.|2x+1|=|x|
6.|3x+4|=|x-2|
7. |x-3|=|2x-1|
8.|2x+5|=|3x-2|
9.|x-3|=|2x-1|
10. |1-x2|=1
Bài 1: Tìm các giá trị của m để mỗi biểu thức sau luôn dương:
a) x2- 4x + m -5
b) x2 - ( m + 2)x +8m +1
c) x2 + 4x + (m - 2)2
d) -x2 + 4( m+1)x + 1 - m2
e) -x2 + 2m\(\sqrt{2x}\) - 2m2 - 1
f) (m - 2)x2 - 2( m- 3 )x + m -1
1:với giá trị nào của thì không tồn tại giá trị của x để f(x)=\(2x-mx-m\) dương
2:tam giác ABC có a=6,b=\(4\sqrt{2}\), c=2. Tìm điểm M trên cạnh BC sao cho BM=3. Độ dài đoạn AM= ?
3: Tìm m để \(\left(m+1\right)x^2+mx+m< 0,\forall x\in R\)
4: cho hai điểm A(4; -1), B(1; -4). Phương trình tổng quát đoạn AB là?
5: giá trị thực của x để đa thức f(x)=\(2x+\frac{3}{2x+4}-\left(3+\frac{3}{2x+4}\right)\) âm là?