\(1,\left|2x-3\right|=x-5\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-5\ge0\\\left[{}\begin{matrix}2x-3=x-5\\2x-3=-x+5\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\text{≥}5\\\left[{}\begin{matrix}x=-2\\x=\frac{8}{3}\end{matrix}\right.\end{matrix}\right.\) (ko thỏa mãn)
=> pt vô nghiệm
\(2,\left|3x+2\right|=x+1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1\text{≥}0\\\left[{}\begin{matrix}3x+2=x+1\\3x+2=-x-1\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\text{≥}-1\\\left[{}\begin{matrix}x=-\frac{1}{2}\\x=-\frac{3}{4}\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{1}{2}\\x=-\frac{3}{4}\end{matrix}\right.\)
\(3,\left|2x+1\right|=7-x\)
\(\Leftrightarrow\left\{{}\begin{matrix}7-x\text{≥}0\\\left[{}\begin{matrix}2x+1=7-x\\2x+1=x-7\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\text{≥}7\\\left[{}\begin{matrix}x=2\\x=-8\end{matrix}\right.\end{matrix}\right.\) (loại)
=> pt vô nghiệm
\(4,\left|2x-5\right|=x+1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1\text{≥}0\\\left[{}\begin{matrix}2x-5=x+1\\2x-5=-x-1\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\text{≥}-1\\\left[{}\begin{matrix}x=6\\x=\frac{4}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\frac{4}{3}\end{matrix}\right.\)
\(5,\left|6x-2\right|=3x-4\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x-4\text{≥}0\\\left[{}\begin{matrix}6x-2=3x-4\\6x-2=-3x+4\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\text{≥}\frac{4}{3}\\\left[{}\begin{matrix}x=-\frac{2}{3}\\x=\frac{2}{3}\end{matrix}\right.\end{matrix}\right.\) => pt vô nghiệm
\(6,\left|3x-2\right|=x-2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2\text{≥}0\\\left[{}\begin{matrix}3x-2=x-2\\3x-2=-x+2\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\text{≥}2\\\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\end{matrix}\right.\) => pt vô nghiệm
\(7,\left|2x+3\right|=1\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+3=1\\2x+3=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\)
\(8,\left|2-x\right|=2x-1\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-1\ge0\\\left[{}\begin{matrix}2-x=2x-1\\2-x=-2x+1\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{1}{2}\\\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow x=1\)
\(9,\left|2x-1\right|=x-3\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3\ge0\\\left[{}\begin{matrix}2x-1=x-3\\2x-1=-x+3\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge3\\\left[{}\begin{matrix}x=-2\\x=\frac{4}{3}\end{matrix}\right.\end{matrix}\right.\) => pt vô nghiệm
\(10,2\left|x-1\right|=x+2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+2\ge0\\\left[{}\begin{matrix}2x-2=x+2\\2x-2=-x-2\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\)