1: \(\left\{{}\begin{matrix}x\sqrt{2}-3y=1\\2x+y\sqrt{2}=-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x-3\sqrt{2}\cdot y=\sqrt{2}\\2x+y\sqrt{2}=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4\sqrt{2}\cdot y=\sqrt{2}+2\\2x+y\sqrt{2}=-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{2+\sqrt{2}}{-4\sqrt{2}}=\dfrac{-\sqrt{2}-1}{4}\\2x=-2-y\sqrt{2}=-2+\sqrt{2}\cdot\dfrac{\sqrt{2}+1}{4}=\dfrac{-6+\sqrt{2}}{4}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{-\sqrt{2}-1}{4}\\x=\dfrac{-6+\sqrt{2}}{8}\end{matrix}\right.\)
2: \(\left\{{}\begin{matrix}5x\sqrt{3}+y=2\sqrt{2}\\x\sqrt{6}-y\sqrt{2}=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}5x\sqrt{6}+y\sqrt{2}=4\\x\sqrt{6}-y\sqrt{2}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x\cdot\sqrt{6}=6\\x\sqrt{6}-y\sqrt{2}=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{1}{\sqrt{6}}=\dfrac{\sqrt{6}}{6}\\y\sqrt{2}=x\sqrt{6}-2=1-2=-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{\sqrt{6}}{6}\\y=-\dfrac{\sqrt{2}}{2}\end{matrix}\right.\)