`3/(x-5) = -4/(x+2)`
`3(x+2) = -4(x-5)`
`3x + 6 = -4x + 20`
`7x= 14`
`x=2`
\(đk:\left\{{}\begin{matrix}x\ne5\\x\ne-2\end{matrix}\right.\\ =>3.\left(x+2\right)=-4.\left(x-5\right)\\ =>3x+6=-4x+20\\ =>3x+4x=20-6\\ =>7x=14\\ =>x=14:7\\ =>x=2\left(t/m\right)\)
\(\dfrac{3}{x-5}=\dfrac{-4}{x+2}\left(ĐKXĐ:x\ne5,x\ne-2\right)\\ =>3\left(x+2\right)=-4\left(x-5\right)\\ =>3x+6=-4x+20\\ =>3x+4x=20-6\\ =>7x=14\\ =>x=2\left(tmđk\right)\)
`3/(x-5) = (-4)/(x+2)`
`=> 3.(x+2)=-4.(x-5)`
`=>3x+6=-4x +20`
`=>3x+4x=20-6`
`=>7x=14`
`=>x=14/7`
`=>x=2`