\(=\dfrac{x+1-x+1+4x+2}{\left(x-1\right)\left(x+1\right)}=\dfrac{4x+4}{\left(x-1\right)\left(x+1\right)}=\dfrac{4}{x-1}\)
Với `x \ne +-1` có:
`1/[x-1]-1/[x+1]+[4x+2]/[x^2-1]`
`=[x+1-x+1+4x+2]/[(x-1)(x+1)]`
`=[4x+4]/[(x-1)(x+1)]`
`=[4(x+1)]/[(x-1)(x+1)]`
`=4/[x-1]`