CM với mọi tam giác ABC ta luôn có:
(b-c)\(\left(\dfrac{1+cosA}{sinA}\right)\)+(c-a)\(\left(\dfrac{1+cosB}{sinB}\right)\)+(a-b)\(\left(\dfrac{1+cosC}{sinC}\right)\)=0
CM với mọi tam giác ABC ta luôn có:
\(\dfrac{a}{b+c-a}+\dfrac{b}{c+a-b}+\dfrac{c}{a+b-c}\ge3\)
Cho tam giác ABC. Xđinh M sao cho: \(\overrightarrow{MA}+3\overrightarrow{MB}+2\overrightarrow{MC}=\overrightarrow{0}\)
Khi đó CM: \(\overrightarrow{CM}=\dfrac{1}{6}\overrightarrow{OA}+\dfrac{1}{2}\overrightarrow{OB}+\dfrac{1}{3}\overrightarrow{OC}\)
Bài 1: cho \(\Delta ABC\) vuông tại A , AC = 2AB = 2a. hãy dựng các vecto và tính độ dài của chúng:
1, \(\overrightarrow{c}\) = \(2\overrightarrow{AB}+3\overrightarrow{AC}\)
2, \(\overrightarrow{u}=\dfrac{2}{3}\overrightarrow{AB}+\dfrac{4}{5}\overrightarrow{AC}\)
3, \(\overrightarrow{v}=\dfrac{7}{4}\overrightarrow{AB}-\dfrac{5}{2}\overrightarrow{AC}\)
Cho tam giác ABC. Xđinh P sao cho: \(5\overrightarrow{PA}-2\overrightarrow{PB}-\overrightarrow{PC}=\overrightarrow{0}\)
Khi đó cminh: \(\overrightarrow{OP}=\dfrac{5}{2}\overrightarrow{OA}-\overrightarrow{OB}-\dfrac{1}{2}\overrightarrow{OC}\)
Cho tam giác ABC điểm E thuộc cạnh AB sao cho \(AE=\dfrac{1}{2}BE\), điểm F thuộc cạnh AC sao cho AF=2FC . G là trọng tâm tam giác ABC
a) Tính \(\overrightarrow{AG}\) theo \(\overrightarrow{AE,}\overrightarrow{AF}\) . AG cắt EF tại I. Xác định tỉ số \(\dfrac{AI}{AG}\)
b) Gọi P là trung điểm của EF. Tính \(\overrightarrow{AP}\) theo \(\overrightarrow{AB},\overrightarrow{AC}\) . AP cắt BC tại K. Xác định K và tính \(\dfrac{AP}{AK}\)
Cho tam giác ABC Gọi K là trung điểm của BC M thuộc AB sao cho MA=3MB, N thuộc AC sao cho \(\dfrac{NA}{NC}=\dfrac{4}{3}\) I là giao điểm của AK và MN. tính \(\dfrac{MI}{MN}=?\)
Câu 1: cho hình chữ nhật ABCD và I là giao điểm của 2 đường chéo. Tập hợp các điểm M thỏa mãn \(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|\overrightarrow{MC}+\overrightarrow{MD}\right|\) là
A. trung trực của đoạn thẳng AB
B. trung trực của đoạn thẳng AD
C. đường tròn tâm I, bán kính \(\dfrac{AC}{2}\)
D. đường tròn tâm I, bán kính \(\dfrac{AB+BC}{2}\)
Câu 2: cho 2 điểm A, B phân biệt và cố định, với I là trung điểm của AB. Tập hợp các điểm M thỏa mãn đẳng thức \(\left|2\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|\overrightarrow{MA}+2\overrightarrow{MB}\right|\) là
A. đường trung trực của đoạn thẳng AB
B. đường tròn đường kính AB
C. đường trung trực đoạn thẳng IA
D. đường tròn tâm A, bán kính AB
cho tam giác ABC có trọng tâm G. Gọi D và E là các điểm được xách định bởi \(\overrightarrow{AD}=2\overrightarrow{AB};\overrightarrow{AE}=\dfrac{2}{5}\overrightarrow{AC}\)
a/biểu diễn vecto DE và DG theo hai vaecto AB và AC
b/chứng minh 3 điểm D,E,G thẳng hàng