CM với mọi tam giác ABC ta luôn có:
\(\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
CM với mọi tam giác ABC ta luôn có:
\(\dfrac{a}{b+c-a}+\dfrac{b}{c+a-b}+\dfrac{c}{a+b-c}\ge3\)
Câu 1: cho hình chữ nhật ABCD và I là giao điểm của 2 đường chéo. Tập hợp các điểm M thỏa mãn \(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|\overrightarrow{MC}+\overrightarrow{MD}\right|\) là
A. trung trực của đoạn thẳng AB
B. trung trực của đoạn thẳng AD
C. đường tròn tâm I, bán kính \(\dfrac{AC}{2}\)
D. đường tròn tâm I, bán kính \(\dfrac{AB+BC}{2}\)
Câu 2: cho 2 điểm A, B phân biệt và cố định, với I là trung điểm của AB. Tập hợp các điểm M thỏa mãn đẳng thức \(\left|2\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|\overrightarrow{MA}+2\overrightarrow{MB}\right|\) là
A. đường trung trực của đoạn thẳng AB
B. đường tròn đường kính AB
C. đường trung trực đoạn thẳng IA
D. đường tròn tâm A, bán kính AB
Cho tam giác ABC, tìm quỹ tích điểm M thỏa mãn:
a) \(\left|\overrightarrow{MA}+\overrightarrow{BC}\right|=\left|\overrightarrow{MA}-\overrightarrow{MB}\right|\)
b) \(\left|\overrightarrow{2MA}+\overrightarrow{MB}\right|=\left|\overrightarrow{4MB}-\overrightarrow{MC}\right|\)
c) \(\left|\overrightarrow{4MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|\overrightarrow{2MA}-\overrightarrow{MB}-\overrightarrow{MC}\right|\)
(Sử dụng kiển thức về tích của hai vecto)
Cho tam giác ABC .Tập hợp các điểm M thỏa mãn ;\(\left|\overrightarrow{MB}-\overrightarrow{MC}\right|=\left|\overrightarrow{BM}-\overrightarrow{BA}\right|\)
Cho tam giác ABC. Xđinh M sao cho: \(\overrightarrow{MA}+3\overrightarrow{MB}+2\overrightarrow{MC}=\overrightarrow{0}\)
Khi đó CM: \(\overrightarrow{CM}=\dfrac{1}{6}\overrightarrow{OA}+\dfrac{1}{2}\overrightarrow{OB}+\dfrac{1}{3}\overrightarrow{OC}\)
Cho \(\Delta ABC\) điểm M thỏa mãn : \(\overrightarrow{MB}=-\overrightarrow{2MC}\)
a, G là trọng tâm tam giác ABC , H đối xứng với B qua G
CM: \(\overrightarrow{AH}=\frac{2}{3}\overrightarrow{AC}-\frac{1}{3}\overrightarrow{AB}\)
\(\overrightarrow{CH}=\frac{-1}{3}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)
b. N là trung điểm của BC . CM \(\overrightarrow{NH}=\frac{1}{6}\overrightarrow{AC}-\frac{5}{6}\overrightarrow{AB}\)
cho tam giác ABC vuông cân tại A có AB = a.Tính \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|\)
Tam giác ABC có AB=AC=a và \(\widehat{BAC}\) = 120 .Tính \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|\)