\(\left(-\dfrac{b}{a}\right)^2-\dfrac{4c}{a}=\dfrac{b^2}{a^2}-\dfrac{4ac}{a^2}=\dfrac{b^2-4ac}{a^2}\)
\(\left(-\dfrac{b}{a}\right)^2-\dfrac{4c}{a}=\dfrac{b^2}{a^2}-\dfrac{4ac}{a^2}=\dfrac{b^2-4ac}{a^2}\)
Cho 3 số thực dương x,y,z thỏa mãn \(\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{3}{c}=3\)
Chứng minh \(\dfrac{27a^2}{c\left(c^2+9a^2\right)}+\dfrac{b^2}{a\left(4a^2+b^2\right)}+\dfrac{8c^3}{b\left(9b^2+4c^2\right)}\ge\dfrac{3}{2}\)
Chứng minh đẳng thức sau đúng với mọi giá trị thích hợp của biến
\(\left(a-2\right):\left\{\dfrac{a^2-b^2}{a^3+b^3}.\left[a-\dfrac{a^2+b^2}{b}:\left(\dfrac{1}{a}-\dfrac{1}{b}\right)\right]\right\}=\dfrac{a-2}{a}\)
Cho a, b, c đôi một khác nhau. chứng minh: \(\dfrac{a^2}{\left(b-c\right)^2}\)+\(\dfrac{b^2}{\left(c-a\right)^2}\)+\(\dfrac{c^2}{\left(a-b\right)^2}\)≥2
Cho a, b, c là các số dương biết abc = 1. Chứng minh rằng: \(\dfrac{a^3}{\left(b+1\right)\left(c+2\right)}+\dfrac{b^3}{\left(c+1\right)\left(a+2\right)}+\dfrac{c^3}{\left(a+1\right)\left(b+2\right)}\ge\dfrac{1}{2}\)
Cho hai số a;b>0 thỏa mãn \(a+\dfrac{1}{b}=1\) .Chứng minh: \(\left(a+\dfrac{1}{a}\right)^2+\left(b+\dfrac{1}{b}\right)^2\)≥\(\dfrac{25}{2}\)
Cho các số dương a,b,c cs abc=1 Chứng minh rằng
\(\dfrac{a^3}{\left(b+2\right)\left(c+3\right)}+\dfrac{b^3}{\left(c+2\right)\left(a+3\right)}+\dfrac{c^3}{\left(a+2\right)\left(b+3\right)}\ge\dfrac{1}{4}\)
Helppppppppppppppppppp
Cho a,b,c là các số thực dương thoả mãn a +b + c <1 . Chứng minh rằng \(\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab+\left(a+b\right)}+\dfrac{1}{bc+\left(b+c\right)}+\dfrac{1}{ca+\left(c+a\right)}< \dfrac{87}{2}\)
Cho \(a,b>0:ab+1\le b\). Chứng minh:
\(\left(a+\dfrac{1}{a^2}\right)+\left(b^2+\dfrac{1}{b}\right)\ge9\)
Bài này hơi khó
Ko bắt giải
Cho a,b,c là các số thực dương thoả mãn a +b + c <1 . Chứng minh rằng \(\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab+\left(a+b\right)}+\dfrac{1}{bc+\left(b+c\right)}+\dfrac{1}{ca+\left(c+a\right)}< \dfrac{87}{2}\)
Help ạ