a: \(2x^2+2x+1=0\)
\(\text{Δ}=2^2-4\cdot2\cdot1=4-8=-4< 0\)
Vì Δ<0 nên phương trình vô nghiệm
a) \(2x^2+2x+1=0\)
\(\Rightarrow2x^2+2x=-1\)
\(\Rightarrow2x\left(x+1\right)=-1\)
⇒ Pt vô nghiệm
b) \(x^2+y^2+2xy+2x+2y+1=0\)
\(\Rightarrow\left(x^2+y^2+2xy\right)+\left(2x+2y+1\right)=0\)
\(\Rightarrow\left(x+y\right)^2+2\left(x+y+1\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x+y\right)^2=0\\2\left(x+y+1\right)=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+y=0\\x+y+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+y=0\\x+y=-1\end{matrix}\right.\)
⇒ Pt vô nghiệm
\(b,\Rightarrow\left(x^2+2xy+y^2\right)+2\left(x+y\right)+1+1=0\\ \Rightarrow\left(x+y\right)^2+2\left(x+y\right)+1+1=0\\ \Rightarrow\left(x+y+1\right)^2+1=0\left(vô.lí.do.\left(x+y+1\right)^2+1\ge1>0\right)\)