Ta có:
\(\frac{1}{n}-\frac{1}{n+a}=\frac{n+a}{n\left(n+a\right)}-\frac{n}{n\left(n+a\right)}=\frac{\left(n+a\right)-n}{n\left(n+a\right)}=\frac{a}{n\left(n+a\right)}\)
Hay \(\frac{a}{n\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}\left(đpcm\right)\)
Ta có: \(\frac{1}{n}\).\(\frac{1}{n+1}\)=\(\frac{1}{n.n+1}\)
\(\frac{1}{n}\) -\(\frac{1}{n+1}\)=\(\frac{n+1}{n.\left(n+1\right)}\)-\(\frac{n}{n.\left(n+1\right)}\)
=\(\frac{n+1-n}{n.\left(n+1\right)}\)=\(\frac{1}{n.\left(n+1\right)}\)
Chọn mình nhé