Biểu thức này chỉ có max, không có min
Biểu thức này chỉ có max, không có min
Bài 1: a;b;c > 0
Chứng minh : \(\dfrac{a}{3a+b+c}+\dfrac{b}{3b+a+c}+\dfrac{c}{3c+a+b}\le\dfrac{3}{5}\)
Bài 2: x;y;z \(\ne\) 1 và xyz = 1
Chứng minh : \(\dfrac{x^2}{\left(x-1\right)^2}+\dfrac{y^2}{\left(y-1\right)^2}+\dfrac{z^2}{\left(z-1\right)^2}\ge1\)
\(1,Cho.a,b,c\ge1.CMR:\left(a-\dfrac{1}{b}\right)\left(b-\dfrac{1}{c}\right)\left(c-\dfrac{1}{a}\right)\ge\left(a-\dfrac{1}{a}\right)\left(b-\dfrac{1}{b}\right)\left(c-\dfrac{1}{c}\right)\)
2, Cho a,b,c>0.CMR:
\(\dfrac{a+b}{bc+a^2}+\dfrac{b+c}{ac+b^2}+\dfrac{c+a}{ab+c^2}\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Rút gọn các phân thức sau:
a) \(\dfrac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ca}\)
b) \(\dfrac{x^3-y^3+z^3+3xyz}{\left(x+y\right)^2+\left(x+z\right)^2+\left(z-x\right)^2}\)
Biết a,b,c khác 0. CMR: \(\dfrac{a^2}{\left(b-c\right)^2}+\dfrac{b^2}{\left(c-a\right)^2}+\dfrac{c^2}{\left(a-b\right)^2}\ge2\)
tìm các hệ số a,b,c sao cho
a) \(\dfrac{1}{x\left(x+1\right)\left(x+2\right)}\)= \(\dfrac{a}{x}\)+\(\dfrac{b}{x+1}\)+\(\dfrac{c}{x+2}\)
b) \(\dfrac{1}{\left(x^2+1\right)\left(x-1\right)}\)=\(\dfrac{ax+b}{x^2+1}\)+\(\dfrac{c}{x-1}\)
Quy đồng mẫu thức của các phân thức
1. \(\dfrac{x-y}{2x^2-4xy+2y^2};\dfrac{x+y}{2x^2+4xy+2y^2};\dfrac{1}{y^2-x^2}\)
2. \(\dfrac{1}{x^2+8x+15};\dfrac{1}{x^2+6x+9}\)
3. \(\dfrac{1}{\left(a-b\right)\left(b-c\right)};\dfrac{1}{\left(c-b\right)\left(c-a\right)};\dfrac{1}{\left(b-a\right)\left(a-c\right)}\)
Tính:
\(A=\dfrac{a^2}{\left(a-b\right)\left(a-c\right)}+\dfrac{b^2}{\left(b-a\right)\left(b-c\right)}+\dfrac{c^2}{\left(c-a\right)\left(c-b\right)}\)
Cho các số x, y > 0. Tìm GTNN của các biểu thức sau:
a, A = \(\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{2xy}{x^2+y^2}\)
b, B = \(\dfrac{\left(x-y\right)^2}{xy}+\dfrac{4xy}{\left(x+y\right)^2}\)