1. Có bao nhiêu \(m\in Z\) \(\in\left[-30;40\right]\) để bpt sau đúng \(\forall x\in R\)
\(a.\left(x+1\right)\left(x-2\right)\left(x+2\right)\left(x+5\right)\ge m\)
b.\(b.\left(x^2-2x+4\right)\left(x^2+3x+4\right)\ge mx^2\)
2. Tìm m để pt
\(\left(m+3\right)x-2\sqrt{x^2-1}+m-3=0\) có nghiệm \(x\ge1\)
Cho các tập \(B=\left\{x\in\mathbb{R}\text{|}-5\le x\le5\right\};C=\left\{x\in\mathbb{R}\text{|}x\le a\right\};D=\left\{x\in\mathbb{R}\text{|}x\ge b\right\}\). Xác định a, b biết \(C\cap B,D\cap B\) lần lượt là các đoạn có độ dài lần lượt bằng 5 và 9.
1. a,b,c>0 và a+b+c=2017
\(CM:\Sigma\dfrac{2017a-a^2}{bc}\ge\sqrt{2}\left(\Sigma\sqrt{\dfrac{2017-a}{a}}\right)\)
2. cho x,y,z tm: \(x^2+y^2+z^2=3\)
\(CM:8\left(2-x\right)\left(2-y\right)\left(2-z\right)\ge\left(x+yz\right)\left(y+zx\right)\left(z+xy\right)\)
3. a,b,c>0 và \(a^2+b^2+c^2\ge6\)
\(CM:\Sigma\dfrac{1}{1+ab}\ge\dfrac{3}{2}\)
Viết mỗi tập hợp sau bằng cách liệt kê các phần tử:
a) A = { \(x\in R\) | \(\left(2x^2-5x+3\right)\left(x^2-4x+3\right)=0\) }
b) B = { \(x\in R\) | \(\left(x^2-10x+21\right)\left(x^3-x\right)=0\) }
c) C = { \(x\in R\) | \(\left(6x^2-7x+1\right)\left(x^2-5x+6\right)\) = 0 }
d) D = { \(x\in Z\) | \(2x^2-5x+3=0\) }
e) E = { \(x\in N\) | \(\left\{{}\begin{matrix}x+3< 4+2x\\5x-3< 4x-1\end{matrix}\right.\) }
f) F = { \(x\in Z\) | \(\left|x+2\right|\le1\) }
g) G = { \(x\in N\) | x < 5 }
h) H = { \(x\in R\) | \(x^2+x+3=0\) }
Khẳng định nào sau đây đúng:
\(A.\frac{4\tan x\left(1-tan^2x\right)}{\left(1+tan^2x\right)^2}=sin^2x \)
\(B.\frac{4\tan x\left(1-tan^2x\right)}{\left(1+tan^2x\right)^2}=sin2x\)
\(C.\frac{4\tan x\left(1-tan^2x\right)}{\left(1+tan^2x\right)^2}=sin4x\)
\(D.\frac{4\tan x\left(1-tan^2x\right)}{\left(1+tan^2x\right)^2}=sinx\)
+) Giải hệ pt: \(\left\{{}\begin{matrix}4\sqrt{x^2+4y-5}=y^2-x+10\\x^3+\left(1-y\right)x^2=\left(x+4\right)y\end{matrix}\right.\)
+) Cho a,b,c>0 và a+b+c=2017
CM: \(\dfrac{2017a-a^2}{bc}+\dfrac{2017b-b^2}{ca}+\dfrac{2017c-c^2}{ab}\ge\sqrt{2}\left(\Sigma\sqrt{\dfrac{2017-a}{a}}\right)\)
cho x,y,z >o. CMR:
\(\frac{\sqrt{y+z}}{x}+\frac{\sqrt{x+z}}{y}+\frac{\sqrt{x+y}}{z}\ge\frac{4\left(x+y+z\right)}{\sqrt{\left(y+z\right)\left(z+x\right)\left(x+y\right)}}\)
Giải các bất phương trình sau:
a)\(\left(x^2+3x-4\right)\left(3-2x\right)\)<0
b) \(\dfrac{x^2+3x+4}{x^2-2}\ge0\)
c) \(\dfrac{x\left(x^2+4x+4\right)}{x^2-1}\ge0\)
\(2\sqrt{x-2}\left(x^2+8\sqrt{x^2-4}\right)\ge x^2\left(x+7\right)\)7)