Cho tứ giác ABCD, I và J lần lượt là trung điểm của AB và CD. Tìm tập hợp điểm M sao cho
\(\overrightarrow{MA}.\overrightarrow{MB}+\overrightarrow{MC}.\overrightarrow{MD}=\dfrac{1}{2}.\overrightarrow{IJ}\)
cho hình vuông ABCD cạnh a . Tính P=\(( \overrightarrow{AB}+ \overrightarrow{AC})( \overrightarrow{BC}+ \overrightarrow{BD}+ \overrightarrow{BA})\)
cho 4 điểm A , B , C , D . CMR
\(\overrightarrow{DA}.\overrightarrow{BC}+\overrightarrow{DB}.\overrightarrow{CA}+\overrightarrow{DC}.\overrightarrow{AB}=\overrightarrow{0}\)
help me
đang cần gấp lắm
#mã mã#
Cho hình vuông ABCD cạnh a, tâm O. Tìm tập hợp điểm M sao cho:
\(\overrightarrow{MA}.\overrightarrow{MB}+\overrightarrow{MC}.\overrightarrow{MD}=5a^2\)
bài 1: cho tam giác ABC đều cạnh a trọng tâm G tính các tích vô hướng \(\overrightarrow{AB}.\overrightarrow{AC}\) ; \(\overrightarrow{AC}.\overrightarrow{CB}\) ; \(\overrightarrow{AG.}\overrightarrow{AB}\) ; \(\overrightarrow{GB.}\overrightarrow{GC}\) theo a
bài 2: cho tam giác ABC vuông tại A có AB =a BC=2a tính các tích vô hướng \(\overrightarrow{AB.}\overrightarrow{AC}\) ; \(\overrightarrow{AC.}\overrightarrow{CB}\) ; \(\overrightarrow{AB.}\overrightarrow{BC}\) theo a
bài 3: cho tam giác ABC có AB =4 BC=8 AC=6
a) tính \(\overrightarrow{AB.}\overrightarrow{AC}\) từ đó suy ra cos A
b) gọi G là trọng tâm của tam giác ABC tính tích vô hướng \(\overrightarrow{AG.}\overrightarrow{BC}\)
bài 4: cho tam giác ABC vuông tại A có BC =a\(\sqrt{3}\) AM là trung tuyến và \(\overrightarrow{AM.}\overrightarrow{BC}\) =\(\frac{a^2}{2}\) tính AB và AC theo a
Trong mặt phẳng tọa độ Oxy cho ba điểm A(3;1), B(3;4), C(0;1)
a) Tìm tọa độ các vectơ \(\overrightarrow{AB}\) , \(\overrightarrow{BC}\) , \(\overrightarrow{AC}\) . Tính \(\overrightarrow{AB}\).\(\overrightarrow{BC}\)
b) Chứng minh tam giác ABC vuông tại A
c) Tính ( \(\overrightarrow{BC}\),\(\overrightarrow{AC}\))
d) Tính độ dài đường trung tuyến AM
e) Tìm tọa độ điểm K nằm trên trục Ox để 3 điểm A,B,K thẳng hàng
Cho hình vuông ABCD có cạnh 4a. Tìm tập hợp M thỏa mãn: \(\overrightarrow{MB}.\overrightarrow{MC}=5a^2\)
Cho hthang vuông ABCD đường cao AB= 2a . AD=a; BC=4a
a, tính \(\overrightarrow{AC}.\overrightarrow{BD}\)
b, Cho I là trung điểm của CD , J di động trên BC . Tính BJ/ \(ẠJ\perp BI\)
c, Tìm {M}/ MB2 = \(\overrightarrow{MA}.\overrightarrow{MB}\)
d, G là trọng tâm \(\Delta ABD\)
Tìm {M} / 3MB2= \(\overrightarrow{MB}.\left(\overrightarrow{MA+}\overrightarrow{2MB}-\overrightarrow{MI}\right)\)
help me (đang cần gấp lắm)
#mã mã#