a: Xét ΔAKB và ΔAKC có
AK chung
KB=KC
AB=AC
Do đó: ΔAKB=ΔAKC
b: Ta có: ΔABC cân tại A
mà AK là đường trung tuyến
nên AK là đường cao
a: Xét ΔAKB và ΔAKC có
AK chung
KB=KC
AB=AC
Do đó: ΔAKB=ΔAKC
b: Ta có: ΔABC cân tại A
mà AK là đường trung tuyến
nên AK là đường cao
Cho tam giác ABC vuông tại A, đường cao AH (AB<AC). Gọi M và N lần lượt là chân đường vuông góc hạ từ H xuống AB,AC. Gọi K là trung điểm BC. I là giao điểm AK với MN
a) Chứng minh: tam giác AHB ∼ tam giác CHA
b) Cho AB=3, AC=4. Tính AH
c) Chứng minh: AM.BM+AN.CN=BH.CH
d) Chứng minh: \(\dfrac{KH}{BH}=2\left(\dfrac{BK}{AB}\right)^2-1\)
e) Chứng minh: \(\dfrac{1}{HA}=\dfrac{1}{HB}+\dfrac{1}{HC}\)
Cho tam giác ABC vuông tại A(AB<AC).Gọi M,N,K thứ tự là trung điểm của Ab,AC và BC
a)Chứng minh ABKN là hình thang vuông
b)Qua M kẻ đường thẳng song song với BN cắt tia KN tại Q.chứng minh AKCQ là hình thoi
c)MN cắt BQ tại O và AK BN tại I. Biết BC=24cm.Tính độ dài OI
d)CHứng minh 3 điểm B,O,Q thẳng hàng.
cho tam giác abc nhọn ( ab< ac) , các đường cao ad , be ,cf của tam giác abc cắt nhau tại h
a) chứng minh ae . ac = af. ab và tam giác abc dồng dạng với tam giác aef
b) gọi k là điểm đối xứng với h qua m của bc chứng minh ak vuông góc với ef
c) gọi n là giao điểm cảu bc và ef chứng minh 1/nb +1/nc =2/nd
Cho tam giác ABC vuông tại A (AB<AC) vẽ đường cao AH (H thuộc BC)
a) Chứng minh tam giác ACH đồng dạng với tam giác BCA, từ đó suy ra AH×BC=AB×AC
b) Gọi K,I lần lượt là trung điểm HC và AH (K thuộc HC, I thuộc AH). Chứng minh tam giác HIK đồng dạng với tam giác ABC.
c) Vẽ HE,HF lần lượt vuông góc với AB,AC (E thuộc AB, F thuộc AC).
d) Cho BA=3cm, BC=5cm. Tính AE.
1) Cho tam giác ABC có AB<AC, AH là đường cao. Goi M, N, K lần lượt là trung điểm AB, AC, BC
a)Chứng minh MNKH là hình thang cân
b)Tia AH và tia AK lần lượt lấy điểm E và D sao cho H là trung điểm AE và K là trung điểm của AD. Chứng minh tứ giác BCDE là hình thang cân
2) Cho tam giác ABC có Â>90 độ. Bên ngoài tam giác ABC, vẽ tam giác ABD và tam giác ACE vuông cân tại A
a) Chứng minh CD=BE
b) Gọi M,N,P lần lượt là trung điểm của BD, CE, BC. Chứng minh tam giác MNPlà tam giác vuông cân
Cho tam giác ABC vuông tại A, đường cao AH, biết AB = 6 cm, AC = 8 cm.
a/ Chứng minh tam giác ABC đồng dạng tam giác BCA. Tính độ dài BC, BH.
b/ Gọi M là trung điểm của AB, N là hình chiếu của H trên AC. Chứng minh HN bình phương = AN.CN
c/ Gọi I là giao điểm của MH và AC. Chứng minh CI.AB = 2 CN.MI
Cho tam giác ABC có góc a= 90 độ và AB = AC. Gọi K là trung điểm của BC. a) Chứng minh: tam giác AKC=tam giác AKC và AKvuông góc với BC b) Từ C vẽ đường thẳng vuông góc với BC, cắt đường thẳng AB tại E. Chứng minh: EC // AK c) Chứng minh CA là tia phân giác của góc BCE. d) Tính số đo các góc của góc BCE
Cho tam giác ABC vuông cân tại A. Trên các cạnh AB,AC lần lượt lấy các điểm D,E sao cho AD=AE. Đường thẳng qua D vuông góc với BE cắt BC tại I. Đường thẳng qua A vuông góc vói BE cắt BC tại K. Gọi M là giao điểm của AK và CD
a)Chứng minh rằng tam giác ABE=tam giác ACD
b) Chứng minh rằng tam giác MAC cân
c) Chứng minh rằng M là trung điểm CD, K là trung điểm của IC
d) Gọi K là giao điểm của DK và IM, MK cắt GC tại F. Chứng minh rằng FM=FK
Cho tam giác ABC vuông tại A,AB=12cm,BC=13cm. Gọi M, N lần lượt là trung điểm của AB và BC
a) Chứng minh MN là đường trung bình của tam giác. Từ đó chứng minh MN vuông với AB
b) Tính độ dài MN
Cho tam giác ABC vuông tại A có AB < AC. M là trung điểm của BC. Kẻ ME vuông góc AB ( E thuộc AB ). Kẻ MF vuông góc AC ( F thuộc AC )
a) Chứng minh EF = BC/2
b) Gọi AK là đường cao của tam giác ABC. Chứng minh KMFE là hình thang cân
Giúp mình với ạ, mình cảm ơn