Lời giải:
Ta có:
\(2\overrightarrow{AN}=\overrightarrow{AN}+\overrightarrow{AN}=\overrightarrow{AB}+\overrightarrow{BN}+\overrightarrow{AC}+\overrightarrow{CN}\)
\(=(\overrightarrow{AB}+\overrightarrow{AC})+(\overrightarrow{BN}+\overrightarrow{CN})=\overrightarrow{AB}+\overrightarrow{AC}\)
\(=2\overrightarrow{AM}+2\overrightarrow{AP}=2(\overrightarrow{AM}+\overrightarrow{AP})\)
\(\Rightarrow \overrightarrow{AN}=\overrightarrow{AM}+\overrightarrow{AP}\). Đáp án A đúng
---------------------------
Tương tự: \(\overrightarrow{BP}=\overrightarrow{BM}+\overrightarrow{BN}\Rightarrow \overrightarrow{PB}=\overrightarrow{MB}+\overrightarrow{NB}\) (đáp án B đúng)
---------------
\(\overrightarrow{BP}=\overrightarrow{BM}+\overrightarrow{BN}=2\overrightarrow{BA}+2\overrightarrow{BC}=2(\overrightarrow{BA}+\overrightarrow{BC})\) (đáp án C sai )
----------------
\(\overrightarrow{CM}=\overrightarrow{CP}+\overrightarrow{CN}=\overrightarrow{CP}+\overrightarrow{NB}\) (đáp án D đúng)
Vậy đáp án cần chọn là C
Lời giải:
Ta có:
\(2\overrightarrow{AN}=\overrightarrow{AN}+\overrightarrow{AN}=\overrightarrow{AB}+\overrightarrow{BN}+\overrightarrow{AC}+\overrightarrow{CN}\)
\(=(\overrightarrow{AB}+\overrightarrow{AC})+(\overrightarrow{BN}+\overrightarrow{CN})=\overrightarrow{AB}+\overrightarrow{AC}\)
\(=2\overrightarrow{AM}+2\overrightarrow{AP}=2(\overrightarrow{AM}+\overrightarrow{AP})\)
\(\Rightarrow \overrightarrow{AN}=\overrightarrow{AM}+\overrightarrow{AP}\)
Đáp án A