Cho tam giác \(ABC\) vuông tại \(A\) có \(AB=3a,AC=4a\). Gọi \(\overrightarrow{u},\overrightarrow{v},\overrightarrow{s}\) lần lượt là các véc-tơ có giá vuông góc với các đường thẳng \(AB,AC,BC\). Cho \(\left|\overrightarrow{u}\right|=AB,\left|\overrightarrow{v}\right|=AC,\left|\overrightarrow{s}\right|=BC\). Tính theo \(a\) độ dài của véc-tơ \(\overrightarrow{x}=\overrightarrow{u}+\overrightarrow{v}-\overrightarrow{s}\).
Cho tam giác ABC ngoại tiếp (O). Gọi M,N,P lần lượt là các tiếp điểm của đường tròn với các cạnh BC, CA, AB và thỏa mãn
\(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}=0\). CHứng minh tam giác ABC đều
Giúp e những bài này với ạ
1) Cho tam giác ABC. GỌI N, H, V là ba điểm thỏa mãn:
\(\overrightarrow{NB} \)-2\(\overrightarrow{NC} \)=\(\overrightarrow{0} \)
\(2\overrightarrow{HC}+\overrightarrow{HA}=\overrightarrow{0} \)
\(\overrightarrow{VA}+\overrightarrow{VB}=\overrightarrow{0} \)
b) chứng minh n,h,v thẳng hàng
2) Cho tam giác ABC nội tiếp đường tròn tâm O. Gọi G và H lần lượt là trọng tâm và trực tâm của tam giác ABC. Còn M là trung điểm BC.
a) so sánh 2 vecto \(\overrightarrow{HA},\overrightarrow{MO} \)
b) Chứng minh rằng :
i) \(\overrightarrow{HA}+\overrightarrow{HB}+\overrightarrow{HC}=2\overrightarrow{HO} \)
ii)\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=3\overrightarrow{OG} \)
3)Cho tam giác ABC và một điểm M thỏa mãn hệ thức \(\overrightarrow{BM}=2\overrightarrow{MC} \). Gọi BN là trung tuyến của tam giác ABC và I là trung điểm BN.
Chứng Minh a)\(2\overrightarrow{MB}+\overrightarrow{MA}+\overrightarrow{MC}=4\overrightarrow{MI} \)
b) \(\overrightarrow{AI}+\overrightarrow{BM}+\overrightarrow{CN}=\overrightarrow{CI}+\overrightarrow{BN}+\overrightarrow{AM} \)
4)Cho tam giác ABC, , lấy các điểm M, N, P sao cho \(\overrightarrow{MA}+3\overrightarrow{MB}=6\overrightarrow{NP}-\overrightarrow{NC}=\overrightarrow{PC}+2\overrightarrow{PA}=\overrightarrow{0} \)
a) Biểu diễn \(\overrightarrow{AN} \) qua \(\overrightarrow{AM} \) và \(\overrightarrow{AP} \)
b)Chứng minh M,N,P thẳng hàng
Cho tam giác ABC có AB= 5; AC=8, số đo góc A bằng 60o. M,N là 2 điểm xác định bởi 5\(\overrightarrow{AM}\)=\(\overrightarrow{AB}\);4\(\overrightarrow{AN}\)=\(\overrightarrow{AC}\). Chứng minh CM vuông góc BN.
trong mặt phẳng tọa độ Oxy cho tam giác ABC có A(1;1) , B(4;2) , C(2;-2).Gọi M là điểm bất kì trên đường thẳng AB, hãy tìm GTNN của \(P=^{\left|\overrightarrow{MA}-\overrightarrow{MB}+\overrightarrow{MC}\right|}\)
Cho hình bình hành ABCD tâm O. Xác định vị trí điểm M thỏa mãn \(\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{AM}\). Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm các cạnh AB, BC, CA và dựng điểm K sao cho \(\overrightarrow{MK}+\overrightarrow{CN}=\overrightarrow{0}\). Khi đó, điểm K trùng với
Cho Tam giác ABC, trên cạnh AB, AC lấy hai điểm M, N thỏa mãn 4MA=3MB,
2NA=NC. Gọi I là giao điểm BN và CM. Chứng minh rằng: \(4\overrightarrow{AI}=3\overrightarrow{IB}+2\overrightarrow{IC}\)
Cho tam giác ABC. Gọi H là trực tâm của tam giác ABC và A' ; B' ; C' lần lượt là chân đường vuông góc hà từ A, B, C lên các cạnh BC, AC, AB. Chứng minh rằng \(B'C'.\overrightarrow{HA'}+C'A'.\overrightarrow{HB'}+A'B'.\overrightarrow{HC'}=\overrightarrow{0}\)
cho hình vuông ABCD có cạnh a. Gọi d là đường thẳng qua D và song song với AC. M là điểm tùy ý trên d. Giá trị nhỏ nhất của biểu thức\(T=\left|\overrightarrow{MA}+2\overrightarrow{MB}+3\overrightarrow{MC}\right|\)
1) Cho tam giác ABC vuông tại A , cạnh AB= 1 và góc ABC= 60 độ
Tìm tập hợp điểm N thỏa mãn: 4. \(\overrightarrow{NB.}\overrightarrow{NC}\) =11
c) Gọi hai điểm I, J di động trên đường tròn tâm O ngoại tiếp tam giác vuông ABC thỏa mãn: \(\left|4\overrightarrow{OI}+5\overrightarrow{ỌJ}\right|=\dfrac{5}{2}\) Tính cosin của góc IOJ