AB.AC= |AB||AC|.cos(ab,ac)=-35/2
AB.BC=AB(BA+AC)=-49+ -35/2=-133/2
AB.AC= |AB||AC|.cos(ab,ac)=-35/2
AB.BC=AB(BA+AC)=-49+ -35/2=-133/2
Cho tam giác ABC có AB=5; AC=6; \(\widehat{A}\)=120
a) Tính \(\overrightarrow{BA}\cdot\overrightarrow{AC}\) và độ dài BC
b) Gọi N là điểm thỏa mãn \(\overrightarrow{NA}+2\overrightarrow{AC}=\overrightarrow{0}\). Gọi K là điểm trên cạnh BC sao cho \(\overrightarrow{BK}=x\overrightarrow{BC}\). Tìm x để AK⊥BN
bài 1: cho tam giác ABC đều cạnh a trọng tâm G tính các tích vô hướng \(\overrightarrow{AB}.\overrightarrow{AC}\) ; \(\overrightarrow{AC}.\overrightarrow{CB}\) ; \(\overrightarrow{AG.}\overrightarrow{AB}\) ; \(\overrightarrow{GB.}\overrightarrow{GC}\) theo a
bài 2: cho tam giác ABC vuông tại A có AB =a BC=2a tính các tích vô hướng \(\overrightarrow{AB.}\overrightarrow{AC}\) ; \(\overrightarrow{AC.}\overrightarrow{CB}\) ; \(\overrightarrow{AB.}\overrightarrow{BC}\) theo a
bài 3: cho tam giác ABC có AB =4 BC=8 AC=6
a) tính \(\overrightarrow{AB.}\overrightarrow{AC}\) từ đó suy ra cos A
b) gọi G là trọng tâm của tam giác ABC tính tích vô hướng \(\overrightarrow{AG.}\overrightarrow{BC}\)
bài 4: cho tam giác ABC vuông tại A có BC =a\(\sqrt{3}\) AM là trung tuyến và \(\overrightarrow{AM.}\overrightarrow{BC}\) =\(\frac{a^2}{2}\) tính AB và AC theo a
cho hình vuông ABCD cạnh a . Tính P=\(( \overrightarrow{AB}+ \overrightarrow{AC})( \overrightarrow{BC}+ \overrightarrow{BD}+ \overrightarrow{BA})\)
Cho tam giác ABC đều cạnh 3. Tính \(\overrightarrow{AB}\left(2\overrightarrow{AB}-3\overrightarrow{AC}\right)\), \(\overrightarrow{AM}\left(\overrightarrow{AB}+\overrightarrow{CM}\right)\) M là trung điểm BC
Tam giác ABC có AC = 9, BC = 5, C = 900, tính \(\overrightarrow{AB}.\overrightarrow{AC}\)
Cho tam giác ABC và ba trung tuyến AM,BN,CP.Chứng minh:
\(\overrightarrow{AM}.\overrightarrow{BC}+\overrightarrow{BN}.\overrightarrow{CA}+\overrightarrow{CP}.\overrightarrow{AB}=0\)
Cho tam giác ABC và điểm M bất kỳ,chứng minh:
\(\overrightarrow{AM}.\overrightarrow{BC}+\overrightarrow{BM}.\overrightarrow{CA}+\overrightarrow{CM}.\overrightarrow{AB}=0\)
Cho \(\Delta ABC\), CMR :
\(S_{\Delta ABC}=\frac{1}{2}\sqrt{\overrightarrow{AB^2}.\overrightarrow{AC^2}-\left(\overrightarrow{AB}.\overrightarrow{AC}\right)^2}\)
Cho tam giác ABC, M là trung điểm BC. CMR: \(\overrightarrow{AB}.\overrightarrow{AC}=AM^2-BM^2\)
Cho tam giác ABC vuông tại A. Tìm tập hợp các điểm M thỏa:
a. \(\overrightarrow{MA}.\overrightarrow{MB}=\overrightarrow{MA}.\overrightarrow{MC}\)
b. \(\overrightarrow{MB}.\overrightarrow{MC}=\overrightarrow{AB}.\overrightarrow{AC}\)
c. \(\overrightarrow{MB}.\overrightarrow{MC}=MA^2\)