Bài 1. PHƯƠNG TRÌNH ĐƯỜNG THẲNG

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Cẩm Vân

Cho tam giác ABC có A(1,2), B(-2,6), C(4,8)

a) Viết phương trình tổng quát của đt AB,BC

b) Viết phương trình tham số của AC

c) Viết phương trình tổng quát của đường trung tuyến AM,BN

d) Viết phương trình tham số của đường trung tuyến CP

e) Viết phương trình tổng quát các đường thẳng chứa các đường cao của tam giác ABC

f) Viết phương trình các đường thẳng chứa các đường trung bình của tam giác ABC

g) Viết phương trình các đường thẳng chứa các đường trung trực của tam giác ABC

h) Tính khoảng cách từ điểm C đến đường thẳng AB

Nguyễn Việt Lâm
7 tháng 6 2020 lúc 17:49

\(\overrightarrow{BA}=\left(3;-4\right);\overrightarrow{AC}=\left(3;6\right)=3\left(1;2\right);\overrightarrow{BC}=\left(6;2\right)=2\left(3;1\right)\)

a/ AB qua A và nhận (4;3) là 1 vtpt

Pt AB: \(4\left(x-1\right)+3\left(y-2\right)=0\Leftrightarrow4x+3y-10=0\)

BC qua B và nhận (1;-3) là 1 vtpt

Pt BC: \(1\left(x+2\right)-3\left(y-6\right)=0\Leftrightarrow x-3y+20=0\)

b/ AC qua A và nhận \(\left(1;2\right)\) là 1 vtcp nên có pt: \(\left\{{}\begin{matrix}x=1+t\\y=2+2t\end{matrix}\right.\)

c/ M là trung điểm BC \(\Rightarrow M\left(1;7\right)\Rightarrow\overrightarrow{AM}=\left(0;5\right)=5\left(0;1\right)\)

AM nhận (1;0) là 1 vtpt

Pt AM: \(1\left(x-1\right)+0\left(y-2\right)=0\Leftrightarrow x-1=0\)

N là trung điểm AC \(\Rightarrow N\left(\frac{5}{2};5\right)\Rightarrow\overrightarrow{BN}=\left(\frac{9}{2};-1\right)=\frac{1}{2}\left(9;-2\right)\)

BN nhận (2;9) là 1 vtpt

Pt BN: \(2\left(x+2\right)+9\left(y-6\right)=0\Leftrightarrow2x+9y-32=0\)

Nguyễn Việt Lâm
7 tháng 6 2020 lúc 18:00

d/ P là trung điểm AB \(\Rightarrow P\left(-\frac{1}{2};4\right)\Rightarrow\overrightarrow{PC}=\left(\frac{9}{2};4\right)=\frac{1}{2}\left(9;8\right)\)

Đường thẳng CP nhận (9;8) là 1 vtcp

Phương trình tham số: \(\left\{{}\begin{matrix}x=4+9t\\y=8+8t\end{matrix}\right.\)

e/ Đường cao AH vuông góc BC nên nhận \(\left(3;1\right)\) là 1 vtpt

Pt AH: \(3\left(x-1\right)+1\left(y-2\right)=0\Leftrightarrow3x+y-5=0\)

BK vuông góc AC nên nhận (1;2) là 1 vtpt

Pt BK: \(1\left(x+2\right)+2\left(y-6\right)=0\Leftrightarrow x+2y-10=0\)

CI vuông góc AB nên nhận \(\left(3;-4\right)\) là 1 vtpt

Pt CI: \(3\left(x-4\right)-4\left(y-8\right)=0\Leftrightarrow3x-4y+20=0\)

Nguyễn Việt Lâm
7 tháng 6 2020 lúc 18:05

f/ Thôi nhiều quá làm biếng, giờ mỗi câu làm 1 ý, bạn tự xử 2 ý còn lại:

\(\overrightarrow{MN}=\left(\frac{3}{2};-2\right)=\frac{1}{2}\left(3;-4\right)\)

Đường thẳng MN nhận \(\left(4;3\right)\) là 1 vtpt và đi qua M nên có pt:

\(4\left(x-1\right)+3\left(y-7\right)=0\Leftrightarrow4x+3y-25=0\)

g/ Trung trực của cạnh BC vuông góc BC nên nhận \(\left(3;1\right)\) là 1 vtpt và đi qua M

Phương trình trung trực BC:

\(3\left(x-1\right)+1\left(y-7\right)=0\Leftrightarrow3x+y-10=0\)

h/ Áp dụng công thức khoảng cách:

\(d\left(C;AB\right)=\frac{\left|4.4+8.3-10\right|}{\sqrt{4^2+3^2}}=6\)


Các câu hỏi tương tự
Nguyễn Lê Gia Hưng
Xem chi tiết
An An
Xem chi tiết
Hạ Băng Băng
Xem chi tiết
bùi thảo vy
Xem chi tiết
Cindy
Xem chi tiết
G.Dr
Xem chi tiết
Hạ Băng Băng
Xem chi tiết
Bàn phương liên
Xem chi tiết
Thao Dang
Xem chi tiết