để pt có 2 nghiệm phân biệt thì △>0
x^2 - mx + m - 2
<=>△= \(b^2\)-4ac = \(\left(-m\right)^2\)- 4.1.(m-2) = \(m^2\)-4m+8 =\(m^2\)-2.2m+\(2^2\)-\(2^2\)+8=\(\left(m-2\right)^2\)+4 luôn >0
theo Vi-ét,ta có
S=\(x_1\)+\(x_2\)=\(\dfrac{-b}{a}\)=\(\dfrac{-\left(-m\right)}{1}\)=m
P=\(x_1\).\(x_2\)=\(\dfrac{c}{a}\)=\(\dfrac{m-2}{1}\)= m- 2