Cho hình chữ nhật ABCD tâm O. AB=a, AD=2a. Tính \(\left|\overrightarrow{OB}+\overrightarrow{OC}\right|\) ; \(\left|\overrightarrow{CB}+\overrightarrow{CD}\right|\) ; \(\left|\overrightarrow{BC}+\overrightarrow{DC}\right|\) ; \(\left|\overrightarrow{AB}+\overrightarrow{BC}\right|\)
CHo hình bình hành ABCD có O là giao điểm của 2 đường chéo. Chứng minh:
a, \(\overrightarrow{AC}-\overrightarrow{BA}=\overrightarrow{AD};\) \(|\) \(\overrightarrow{AB}+\overrightarrow{AD}\)\(|\) \(=\overrightarrow{AC}\)
b, NẾu \(|\overrightarrow{AB}+\overrightarrow{AD}|=|\overrightarrow{CB}-\overrightarrow{CD|}\) thì ABCD là hình chữ nhật
Cho hbh ABCD tâm O: Tính
a, \(\overrightarrow{AB}\) + \(\overrightarrow{BC}\)
b, \(\overrightarrow{AC}+\overrightarrow{DA}\)
c. \(\overrightarrow{AB}+\overrightarrow{CD}\)
d. \(\overrightarrow{AB}+\overrightarrow{OA}\)
e, \(\overrightarrow{AB}+\overrightarrow{AD}\)
f, \(\overrightarrow{OA}+\overrightarrow{OC}\)
G. \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}\)
h. \(\overrightarrow{DA}+\overrightarrow{DC}+\overrightarrow{BD}\)
cho 6 điểm A, B , C , D , E , F bất kì trên mặt phẳng
chứng minh a, \(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AD}+\overrightarrow{CB}\)
b , \(\overrightarrow{AB}+\overrightarrow{CD}+\overrightarrow{EA}=\overrightarrow{ED}+\overrightarrow{CB}\)
C, \(\overrightarrow{AD}+\overrightarrow{BE}+\overrightarrow{CF}=\overrightarrow{AE}+\overrightarrow{BF}+\overrightarrow{CD}=\overrightarrow{ÀF}+\overrightarrow{BD}+\overrightarrow{CE}\)
cho tứ giác ABCD . gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, CD, AD, BC. CMR: \(\overrightarrow{MP}=\overrightarrow{QN};\overrightarrow{MQ}=\overrightarrow{PN}\)
Cho hình thang ABCD vuông tại A và D , có AB=AD=2 ,CD=4. Tính độ dài vectơ tổng:
\(\overrightarrow{DA}+\overrightarrow{DB}+\overrightarrow{DC}\)
Cảm ơn các bạn nhiều!
Cho hình bình hành ABCD,I,K lần lượt là trung điểm của BC,DC. Hệ thức nào đúng?
A.\(\overrightarrow{AI}+\overrightarrow{AK}=\overrightarrow{AB}+\overrightarrow{AD}\)
B. \(\overrightarrow{AI}+\overrightarrow{AK}=2\overrightarrow{AC}\)
C.\(\overrightarrow{AI}+\overrightarrow{AK}=\overrightarrow{IK}\)
D.\(\overrightarrow{AI}+\overrightarrow{AK}=\dfrac{3}{2}\overrightarrow{AC}\)
Câu 1:Cho 3 điểm A,B,C sao cho MA=MB=50 và \(\widehat{AMB}=60^0\),biết \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{0}\).Tính độ dài MC
Câu 2:Cho hình thang ABCD có AB//CD.Cho AB=2a,CD=a.Gọi O là trung điểm của AD.Khi đó \(\left|\overrightarrow{OB}+\overrightarrow{OC}\right|\)=?
Cho hình bình hành ABCD. Gọi M,N lần lượt là trung điểm của BC, AD
a, Tìm tổng các vecto: \(\overrightarrow{AC}\) và \(\overrightarrow{NC}\) ; \(\overrightarrow{AM}\) và \(\overrightarrow{AB}\) ; \(\overrightarrow{AD}\) và \(\overrightarrow{NC}\)
b, CMR: \(\overrightarrow{AM}+\overrightarrow{AN}=\overrightarrow{AB}+\overrightarrow{AD}\)