a: Vì SA\(\perp\)(ABCD)
và DC\(\subset\)(ABCD)
nên SA\(\perp\)DC
b: Xét ΔSAD có
M,N lần lượt là trung điểm của SA,SD
=>MN là đường trung bình của ΔSAD
=>MN//AD
Ta có MN//AD
SA\(\perp\)AD(SA\(\perp\)(ABCD))
Do đó: MN\(\perp\)SA
a: Vì SA\(\perp\)(ABCD)
và DC\(\subset\)(ABCD)
nên SA\(\perp\)DC
b: Xét ΔSAD có
M,N lần lượt là trung điểm của SA,SD
=>MN là đường trung bình của ΔSAD
=>MN//AD
Ta có MN//AD
SA\(\perp\)AD(SA\(\perp\)(ABCD))
Do đó: MN\(\perp\)SA
cho hình chóp tứ giác S.ABCD đáy ABCD là hình chữ nhật, SA vuông AB, SA vuông AD và M,N là trung điểm AB,SB. Chứng minh
a) MN vuông AB
b) MN vuông BC
c) MN vuông CD
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật biết AB=a; AD= 2a; SA vuông góc với đáy, SA=a√2. Xác định và tính góc giữa. a) Các đường thẳng SB, SC, SD với mp đáy. b) SC với các mp (SAD) và ( SAB). c) SA với mp (SCD). d) SB và (SAC).
Cho hình chóp S.ABCD có đáy là hình vuông; SA = SB = a và SA vuông góc (ABCD) Gọi M là trung điểm AD, tính khoảng cách giữa hai đường thẳng SC và BM
A. a 14 6
B. 6 a 14
C. a 14 2
D. 2 a 14
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB =a, AD = 2a Cạnh bên SA vuông góc với mặt phẳng đáy và cạnh bên SC tạo với đáy một góc 60 o Gọi M, N là trung điểm các cạnh bên SA và SB Khoảng cách từ điểm S đến mặt phẳng (DMN) bằng
A. 2 a 465 31
B. a 31 31
C. a 60 31
D. 2 a 5 31
cho hình chóp S.ABCD có đáy hình vuông cạnh a, SA = a, SA ⊥ (ABCD). Gọi H, K lần lượt là trung điểm của cạnh SB,SD; O là tâm hình vuông ABCD.
1/ Chứng minh: (SAB) ⊥ (SBC)
2/ Chứng minh: SC ⊥ (AHK)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O , cạnh a , SA vuông góc ABCD , SA =a√2 a) CM : BD vuông góc SAC b) tính góc giữa SC và mp ABCD
cho hình chóp SABCD đáy ABCD là hình chữ nhật AB= a ,AD=2a,SA=SB=SC=SD=2a gọi O là giao điểm của AC và BD
a chứng minh mặt phẳng SAC vuông góc với mặt phẳng ABCD
b tính khoảng cách từ O->mặt phẳng SCD
c gọi M,N lần lượt là trung điểm của các cạnh SA và BC tính sin góc MN,CSBD
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm O, AB = a, BC = a√3 và SA vuông góc (ABCD). Góc giữa SC và mặt phẳng (ABCD) bằng 45°. Gọi M là trung điểm của đoạn OA. Chứng minh (SAC) vuông góc (SBM)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy, S A = a 2 . Tính góc giữa SC và mp (SAB).