1: BC vuông góc AB
BC vuông góc SA
=>BC vuông góc (SAB)
=>(SAB) vuông góc (SBC)
1: BC vuông góc AB
BC vuông góc SA
=>BC vuông góc (SAB)
=>(SAB) vuông góc (SBC)
Hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a. Các cạnh bên SA = SB = SC = SD = a√2. Gọi I và K lần lượt là trung điểm của AD và BC.
a) Chứng minh mặt phẳng (SIK) vuông góc với mặt phẳng (SBC).
b) Tính khoảng cách giữa hai đường thẳng AD và SB.
Cho hình chóp S.ABCD có đáy là hình thoi ABCD và có cạnh SA vuông góc với mặt phẳng (ABCD). Gọi I và K là hai điểm lần lượt lấy trên hai cạnh SB và SD sao cho SI/SB = SK/SD . Chứng minh:
a) BD ⊥ SC
b) IK ⊥mp(SAC)
cần giải gấp
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a với SA vuông góc (ABCD). Kẻ AH vuông góc SB, AK vuông góc SD.
a) chứng minh CD vuông góc (SAD).
b) Chứng minh AK vuông góc SC
c) Gọi M là giao điểm của SC với (AHK). Chứng minh HK vuông góc AM
d)AK=?, AM=? Biết SA = a\(\sqrt{3}\)
Cho hình chóp S.ABCD có đáy hình vuông SC ⊥ (ABCD). Gọi I, J lần lượt là hình chiếu vuông góc của C lên SB, SD
a/ Chứng minh AB ⊥ (SBC)
b/ Chứng minh AD⊥(SCD)
c/ Chứng minh SA ⊥ CI
d/ Chứng minh (SAC) ⊥ (CIJ)
cho hình chóp S.ABCD, đáy ABCD là hình vuông tâm O. Gọi M, N, P lần lượt là trung điểm các cạnh SA, SB, SC
a) chứng minh MN // (ABCD)
b) chứng minh NP // (ABCD)
c) chứng minh (MNP) // (ABCD)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a và SA ⊥ (ABCD).
a) Chứng minh BD ⊥ SC.
b) Chứng minh (SAB) ⊥ (SBC).
c) Cho SA = (a√6)/3. Tính góc giữa SC và mặt phẳng (ABCD).
cho hình chóp S.ABCD, đáy ABCD là hình chữ nhật tâm I. Gọi M, N, P lần lượt là trung điểm các cạnh SA, SB, SD
a) chứng minh (MNP) // (ABCD)
b) chứng minh (SBC) // (MPI)
cho hình chóp S.ABCD, đáy ABCD là hình chữ nhật tâm I. Gọi M, N, P lần lượt là trung điểm các cạnh SA, SB, SD
a) chứng minh (MNP) // (ABCD)
b) chứng minh (SBC) // (MPI)
cho hình chóp S.ABCD, đáy ABCD là hình chữ nhật tâm O. Gọi H, K, I lần lượt là trung điểm các cạnh SA, SD, SC
a) chứng minh HI // (ABCD)
b) chứng minh IK // (ABCD)
c) chứng minh (HIK) // (ABCD)
d) chứng minh BD // (HIK)