a: Xét ΔSAD có M,P lần lượt là trung điểm của SA,SD
=>MP là đường trung bình
=>MP//AD
mà \(AD\subset\left(ABCD\right)\) và MP không thuộc mp(ABCD)
nên MP//(ABCD)
Xét ΔSBD có
N,P lần lượt là trung điểm của SB,SD
=>NP là đường trung bình
=>NP//BD
mà \(BD\subset\left(ABCD\right)\) và NP không thuộc mp(ABCD)
nên NP//(ABCD)
NP//(ABCD)
MP//(ABCD)
NP,MP\(\subset\left(MNP\right)\)
Do đó: (MNP)//(ABCD)
b: Xét ΔDBS có
P,I lần lượt là trung điểm của DS,DB
=>PI là đường trung bình
=>PI//SB
mà \(SB\subset\left(SBC\right)\) và PI không thuộc mp(SBC)
nên PI//(SBC)
MP//AD
AD//BC
Do đó: MP//BC
mà \(BC\subset\left(SBC\right)\) và MP không thuộc mp(SBC)
nên MP//(SBC)
MP//(SBC)
PI//(SBC)
MP,PI\(\subset\)(MPI)
Do đó: (MPI)//(SBC)