a: Xét ΔSAD có
\(\dfrac{SM}{SA}=\dfrac{SP}{SD}=\dfrac{1}{2}\)
nên MP//AD
MP//AD
AD\(\subset\)(ABCD)
MP không nằm trong mp(ABCD)
Do đó: MP//(ABCD)
Xét ΔSAB có \(\dfrac{SM}{SA}=\dfrac{SN}{SB}=\dfrac{1}{2}\)
nên MN//AB
MN//AB
\(AB\subset\left(ABCD\right)\)
MN không nằm trong mp(ABCD)
Do đó: MN//(ABCD)
MP//(ABCD)
MN//(ABCD)
MN,MP cùng nằm trong mp(MNP)
Do đó: (MNP)//(ABCD)
b: Xét ΔSDB có \(\dfrac{DP}{DS}=\dfrac{DI}{DB}\)
nên PI//SB
PI//SB
SB\(\subset\)(SBC)
PI không nằm trong mp(SBC)
Do đó: PI//(SBC)
Xét ΔASC có \(\dfrac{AI}{AC}=\dfrac{AM}{AS}=\dfrac{1}{2}\)
nên MI//SC
MI//SC
SC\(\subset\)(SBC)
MI không nằm trong mp(SBC)
Do đó: MI//(SBC)
PI//(SBC)
MI//(SBC)
MI,PI cùng nằm trong mp(MPI)
Do đó: (SBC)//(MPI)